Show simple item record

Solar filament impact on 21 January 2005: Geospace consequences

dc.contributor.authorKozyra, J. U.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorCattell, C.en_US
dc.contributor.authorDe Zeeuw, D.en_US
dc.contributor.authorEscoubet, C. P.en_US
dc.contributor.authorEvans, D. S.en_US
dc.contributor.authorFang, X.en_US
dc.contributor.authorFok, M.‐c.en_US
dc.contributor.authorFrey, H. U.en_US
dc.contributor.authorGonzalez, W. D.en_US
dc.contributor.authorHairston, M.en_US
dc.contributor.authorHeelis, R.en_US
dc.contributor.authorLu, G.en_US
dc.contributor.authorManchester, W. B.en_US
dc.contributor.authorMende, S.en_US
dc.contributor.authorPaxton, L. J.en_US
dc.contributor.authorRastaetter, L.en_US
dc.contributor.authorRidley, A.en_US
dc.contributor.authorSandanger, M.en_US
dc.contributor.authorSoraas, F.en_US
dc.contributor.authorSotirelis, T.en_US
dc.contributor.authorThomsen, M. W.en_US
dc.contributor.authorTsurutani, B. T.en_US
dc.contributor.authorVerkhoglyadova, O.en_US
dc.date.accessioned2014-09-03T16:51:51Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:51:51Z
dc.date.issued2014-07en_US
dc.identifier.citationKozyra, J. U.; Liemohn, M. W.; Cattell, C.; De Zeeuw, D.; Escoubet, C. P.; Evans, D. S.; Fang, X.; Fok, M.‐c. ; Frey, H. U.; Gonzalez, W. D.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W. B.; Mende, S.; Paxton, L. J.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M. W.; Tsurutani, B. T.; Verkhoglyadova, O. (2014). "Solar filament impact on 21 January 2005: Geospace consequences." Journal of Geophysical Research: Space Physics 119(7): 5401-5448.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108315
dc.description.abstractOn 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere—an unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks—high enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by‐product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1–2 h and intensified the equatorial ionization anomaly. Understanding the geospace consequences of extremes in density and pressure is important because some of the largest and most damaging space weather events ever observed contained similar intervals of dense solar material. Key Points The interactions are studied between geospace and a solar filament Cold dense plasma sheet forms from filament material stretching magnetotail Creates anomalous features including superfountain and expanded auroral ovalen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherRep. COSPAR‐04‐A‐02925, Comm. on Space Resen_US
dc.subject.otherPrecipitationen_US
dc.subject.otherSolar Filamenten_US
dc.subject.otherCold Dense Plasma Sheeten_US
dc.subject.otherMagnetotailen_US
dc.subject.otherPrompt Penetration Electric Fielden_US
dc.subject.otherEquatorial Anomalyen_US
dc.titleSolar filament impact on 21 January 2005: Geospace consequencesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108315/1/jgra51114.pdf
dc.identifier.doi10.1002/2013JA019748en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceReiff, P. R., and J. L. Burch ( 1985 ), IMF By‐dependent plasma flow and Birkeland currents in the dayside magnetosphere, 2. A global model for northward and southward IMF, J. Geophys. Res., 90 ( A2 ), 1595 – 1609.en_US
dc.identifier.citedreferenceSauvaud, J.‐A., P. Koperski, T. Beutier, H. Barthe, C. Aoustin, J. J. Thocaven, J. Rouzaud, E. Penou, O. Vaisberg, and N. Borodkova ( 1997 ), The INTERBALL‐Tail electron experiment: Initial results on the low‐latitude boundary layer of the dawn magnetosphere, Ann. Geophys., 15, 587 – 595.en_US
dc.identifier.citedreferenceSazykin, S. ( 2000 ), Theoretical studies of penetration of magnetospheric electric fields to the ionosphere, PhD thesis, Utah State Univ., Logan, Utah.en_US
dc.identifier.citedreferenceScherliess, L., and B. G. Fejer ( 1997 ), Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res., 102 ( A11 ), 24,037 – 24,046, doi: 10.1029/97JA02165.en_US
dc.identifier.citedreferenceSchlegel, K., H. Lühr, J.‐P. St.‐Maurice, G. Crowley, and C. Hackert ( 2005 ), Thermospheric density structures over the polar regions observed with CHAMP, Ann. Geophys., 23, 1659 – 1672.en_US
dc.identifier.citedreferenceSchulz, M., and L. J. Lanzerotti ( 1974 ), Particle Diffusion in the Radiation Belts, Springer, New York.en_US
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71 ( 13 ), 3125 – 3130, doi: 10.1029/JZ071i013p03125.en_US
dc.identifier.citedreferenceSergeev, V. A., and M. V. Malkov ( 1988 ), Diagnostics of the magnetic configuration of the plasma layer from measurements of energetic electrons above the ionosphere, Geomagn. Aeron., 28, 549.en_US
dc.identifier.citedreferenceSergeev, V. A., E. M. Sazhina, N. A. Tsyganenko, J. A. Lundblad, and F. Søraas ( 1983 ), Pitch‐angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere, Planet. Space Sci., 31, 1147 – 1155, doi: 10.1016/0032‐0633(83)90103‐4.en_US
dc.identifier.citedreferenceSergeev, V. A., M. V. Malkov, and K. Mursula ( 1993 ), Testing of the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail, J. Geophys. Res., 98, 7609 – 7620, doi: 10.1029/92JA02587.en_US
dc.identifier.citedreferenceSergeev, V. A., G. R. Bikkuzina, and P. T. Newell ( 1997 ), Dayside isotropic precipitation of energetic protons, Ann. Geophys., 15, 1233 – 1245.en_US
dc.identifier.citedreferenceSong, P., and C. T. Russell ( 1992 ), Model of formation of the low‐latitude boundary layer for strongly northward interplanetary magnetic field, J. Geophys. Res., 97, 1411 – 1420, doi: 10.1029/91JA02377.en_US
dc.identifier.citedreferenceSøraas, F., and M. Sørbø ( 2013 ), Low altitude observations of ENA from the ring current and from the proton oval, J. Atmos. Sol. Terr. Phys., 99, 104 – 110, doi: 10.1016/j.jastp.2012.10.003.en_US
dc.identifier.citedreferenceSøraas, F., K. Aarsnes, K. Oksavik, and D. S. Evans ( 2002 ), Ring current intensity estimated from low‐altitude proton observations, J. Geophys. Res., 107 ( A7 ), 1149, doi: 10.1029/2001JA000123.en_US
dc.identifier.citedreferenceSøraas, F., K. Oksavik, K. Aarsnes, D. S. Evans, and M. S. Greer ( 2003 ), Stormtime equatorial belt—An “image” of ring current behaviour, Geophys. Res. Lett., 30 ( 2 ), 1052, doi: 10.1029/2002GL015636.en_US
dc.identifier.citedreferenceSpiro, R. W., R. A. Wolf, and B. G. Fejer ( 1988 ), Penetration of high‐latitude electric‐field effects to low latitudes during SUNDIAL 1984, Ann. Geophys., 6 ( 1 ), 39 – 50.en_US
dc.identifier.citedreferenceStone, E. C., A. M. Frandsen, R. A. Mewaldt, E. R. Christian, D. Margolies, J. F. Omes, and F. Snow ( 1998 ), The Advanced Composition Explorer, Space Sci. Rev., 86, 1.en_US
dc.identifier.citedreferenceSutton, E. K., J. M. Forbes, and D. J. Knipp ( 2009 ), Rapid response of the thermosphere to variations in Joule heating, J. Geophys. Res., 114, A04319, doi: 10.1029/2008JA013667.en_US
dc.identifier.citedreferenceTerasawa, T., et al. ( 1997 ), Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration, Geophys. Res., Lett., 24 ( 8 ), 935 – 938, doi: 10.1029/96GL04018.en_US
dc.identifier.citedreferenceThomsen, M. F., S. J. Bame, D. J. McComas, M. B. Moldwin, and K. R. Moore ( 1994 ), The magnetospheric lobe at geosynchronous orbit, J. Geophys. Res., 99 ( A9 ), 17,283 – 17,293, doi: 10.1029/94JA00423.en_US
dc.identifier.citedreferenceThomsen, M. F., E. Noveroske, J. E. Borovsky, and D. J. McComas ( 1997 ), Calculation of moments from measurements by the Los Alamos Magnetospheric Plasma Analyzer, Rep. LA‐13,566‐MS, Los Alamos Natl. Lab., Los Alamos, N. M.en_US
dc.identifier.citedreferenceThomsen, M. F., J. E. Borovsky, R. M. Skoug, and C. W. Smith ( 2003 ), Delivery of cold, dense plasma sheet material into the near‐Earth region, J. Geophys. Res., 108 ( A4 ), 1151, doi: 10.1029/2002JA009544.en_US
dc.identifier.citedreferenceToffoletto, F. R., S. Sazykin, R. W. Spiro, and R. A. Wolf ( 2003 ), Modeling the inner magnetosphere using the Rice Convection Model (review), Space Sci. Rev., 107, 175 – 196.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226., doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903.en_US
dc.identifier.citedreferenceTsurutani, B. T., and R. P. Lin ( 1985 ), Acceleration of >47 keV ions and >2 keV electrons by interplanetary shocks at 1 AU, J. Geophys. Res., 90 ( A1 ), 1 – 11, doi: 10.1029/JA090iA01p00001.en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, F. Tang, and Y. T. Lee ( 1992 ), Great magnetic storms, Geophys. Res. Lett., 19 ( 73 ).en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex ( 2003 ), The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108 ( A7 ), 1268, doi: 10.1029/2002JA009504.en_US
dc.identifier.citedreferenceTsurutani, B., et al. ( 2004 ), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi: 10.1029/2003JA010342.en_US
dc.identifier.citedreferenceTsurutani, B. T., O. P. Verkhoglyadova, A. J. Mannucci, T. Araki, A. Sato, T. Tsuda, and K. Yumoto ( 2007 ), Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event, Ann. Geophys., 25, 569 – 574.en_US
dc.identifier.citedreferenceTsurutani, B. T., et al. ( 2008 ), Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003, J. Geophys. Res., 113, A05311, doi: 10.1029/2007JA012879.en_US
dc.identifier.citedreferenceVaisbert, O. L., and G. N. Zastenker ( 1976 ), Solar wind and magnetosheath observations at Earth during August 1972, Space Sci. Rev., 19, 687 – 702.en_US
dc.identifier.citedreferenceWanliss, J. A., and K. M. Showalter ( 2006 ), High‐resolution global storm index: Dst versus SYM‐H, J. Geophys. Res., 111, A02202, doi: 10.1029/2005JA011034.en_US
dc.identifier.citedreferenceWeiss, L. A., M. F. Thomsen, G. D. Reeves, and D. J. McComas ( 1997 ), An examination of the Tsyganenko (T89a) field model using a database of two‐satellite magnetic conjunctions, J. Geophys. Res., 102 ( A3 ), 4911 – 4918, doi: 10.1029/96JA02876.en_US
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010 ), Validation of SWMF magnetic field and plasma, Space Weather, 8, S03002, doi: 10.1029/2009SW000494.en_US
dc.identifier.citedreferenceWolf, R. A. ( 1983 ), The quasi‐static (slow‐flow) region of the magnetosphere, in Solar Terrestrial Physics, edited by R. L. Carovillano and J. M. Forbes, pp. 303 – 368, Springer, New York.en_US
dc.identifier.citedreferenceWolf, R. A., R. W. Spiro, S. Sazykin, and F. R. Toffoletto ( 2007 ), How the Earth's inner magnetosphere works: An evolving picture, J. Atmos. Sol. Terr. Phys., 69, 288 – 302.en_US
dc.identifier.citedreferenceYamauchi, M., T. Iyemori, H. Frey, and M. Henderson ( 2006 ), Unusually quick development of a 4000 nT substorm during the initial 10 min of the 29 October 2003 magnetic storm, J. Geophys. Res., 111, A04217, doi: 10.1029/2005JA011285.en_US
dc.identifier.citedreferenceYoung, S. L., R. E. Denton, B. J. Anderson, and M. K. Hudson ( 2002 ), Empirical model for μ scattering caused by field line curvature in a realistic magnetosphere, J. Geophys. Res., 107 ( A6 ), 1069, doi: 10.1029/2000JA000294.en_US
dc.identifier.citedreferenceYoung, S. L., R. E. Denton, B. J. Anderson, and M. K. Hudson ( 2008 ), Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere, J. Geophys. Res., 113, A03210, doi: 10.1029/2006JA012133.en_US
dc.identifier.citedreferenceZhang, Y., L. J. Paxton, and Y. Zheng ( 2008 ), Interplanetary shock induced ring current auroras, J. Geophys. Res., 113, A01212, doi: 10.1029/2007JA012554.en_US
dc.identifier.citedreferenceZhou, X.‐Y., and B. T. Tsurutani ( 1999 ), Rapid intensification and propagation of the dayside aurora: Large‐scale interplanetary pressure pulses (fast shocks), Geophys. Res. Lett., 26, 1097 – 1100, doi: 10.1029/1999GL900173.en_US
dc.identifier.citedreferenceZhou, X.‐Y., and B. T. Tsurutani ( 2003 ), Dawn and dusk auroras caused by gradual, intense solar wind ram pressure events, J. Atmos. Sol. Terr. Phys., 66, 153 – 160, doi: 10.1016/j.jastp.2003.09.008.en_US
dc.identifier.citedreferenceZhou, X.‐Y., R. J. Strangeway, P. C. Anderson, D. G. Sibeck, B. T. Tsurutani, G. Haerendel, H. U. Frey, and J. K. Arballo ( 2003 ), Shock aurora: FAST and DMSP observations, J. Geophys. Res., 108 ( A4 ), 8019, doi: 10.1029/2002JA009701.en_US
dc.identifier.citedreferenceZong, Q.‐G., B. W. Reinisch, P. Song, Y. Wei, and I. A. Galkin ( 2010 ), Dayside ionospheric response to the intense interplanetary shocks–solar wind discontinuities: Observations from the digisonde global ionospheric radio observatory, J. Geophys. Res., 115, A06304, doi: 10.1029/2009JA014796.en_US
dc.identifier.citedreferenceAnderson, B. J., R. B. Decker, and N. P. Paschalidis ( 1997 ), Onset of nonadiabatic particle motion in the near‐Earth magnetotail, J. Geophys. Res., 102 ( A8 ), 17,553 – 17,569, doi: 10.1029/97JA00798.en_US
dc.identifier.citedreferenceAstafyeva, E. ( 2009 ), Effects of strong IMF B z southward events on the equatorial and mid‐latitude ionosphere, Ann. Geophys., 27, 1175 – 1187.en_US
dc.identifier.citedreferenceBame, S. J., et al. ( 1993 ), Magnetospheric plasma analyzer for spacecraft with constrained resources, Rev. Sci. Instrum., 64, 1026.en_US
dc.identifier.citedreferenceBasu, S., K. M. Groves, H.‐C. Yeh, S.‐Y. Su, F. J. Rich, P. J. Sultan, and M. J. Keskinen ( 2001 ), Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28, 3577 – 3580, doi: 10.1029/2001GL013259.en_US
dc.identifier.citedreferenceBasu, S., S.‐Y. Su, F. J. Rich, K. M. Groves, E. MacKenzie, C. Coker, Y. Sahai, P. R. Fagundes, and F. Becker‐Guedes ( 2007 ), Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms, J. Geophys. Res., 12, A08308, doi: 10.1029/2006JA012192.en_US
dc.identifier.citedreferenceBell, J. T., M. S. Gussenhoven, and E. G. Mullen ( 1997 ), Super storms, J. Geophys. Res., 102 ( A7 ), 14,189 – 14,198, doi: 10.1029/96JA03759.en_US
dc.identifier.citedreferenceBirmingham, T. J. ( 1984 ), Pitch angle diffusion in the Jovian magnetodisc, J. Geophys. Res., 89 ( A5 ), 2699 – 2707, doi: 10.1029/JA089iA05p02699.en_US
dc.identifier.citedreferenceBlanc, M., and A. D. Richmond ( 1980 ), The ionospheric disturbance dynamo, J. Geophys. Res., 85 ( A4 ), 1669 – 1686, doi: 10.1029/JA085iA04p01669.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2008 ), A statistical look at plasmaspheric drainage plumes, J. Geophys. Res., 113, A09221, doi: 10.1029/2007JA012994.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 ), Magnetic field at geosynchronous orbit during high‐speed stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 115, A08217, doi: 10.1029/2009JA015116.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and D. J. McComas ( 1997 ), The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?, J. Geophys. Res., 102 ( A10 ), 22,089 – 22,097, doi: 10.1029/96JA02469.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and R. C. Elphic ( 1998 ), The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103 ( A8 ), 17,617 – 17,639, doi: 10.1029/97JA02986.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. Hesse, J. Birn, and M. M. Kuznetsova ( 2008 ), What determines the reconnection rate at the dayside magnetosphere?, J. Geophys. Res., 113, A07210, doi: 10.1029/2007JA012645.en_US
dc.identifier.citedreferenceBoteler, D. H., and G. J. van Beek ( 1999 ), August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage, Geophys. Res. Lett., 26 ( 5 ), 577 – 580, doi: 10.1029/1999GL900035.en_US
dc.identifier.citedreferenceBurch, J. L. ( 2000 ), Image mission overview, Space Sci. Rev., 91, 1 – 14.en_US
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, doi: 10.1029/JA080i031p04204.en_US
dc.identifier.citedreferenceCarlson, C. W., R. F. Pfaff, and J. G. Watzin ( 1998 ), The Fast Auroral SnapshoT (FAST) mission, Geophys. Res. Lett., 25 ( 12 ), 2013 – 2016, doi: 10.1029/98GL01592.en_US
dc.identifier.citedreferenceCarlson, C. W., J. P. McFadden, P. Turin, D. W. Curtis, and A. Magoncelli ( 2001 ), The electrons and ion plasma experiment for FAST, Space Sci. Rev., 98, 33 – 66.en_US
dc.identifier.citedreferenceCattell, C. A., M. F. Thomsen, J. Kozyra, B. Lavraud, J. Borovsky, and J. Dombeck ( 2004 ), Energized banded ions during large geomagnetic storms: Comparisons of observations at geosynchronous and low altitudes, Rep. COSPAR‐04‐A‐02925, Comm. on Space Res, Paris, France.en_US
dc.identifier.citedreferenceChristensen, A. B., et al. ( 2003 ), Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108 ( A12 ), 1451, doi: 10.1029/2003JA009918.en_US
dc.identifier.citedreferenceClemmons, J. H., J. H. Hecht, D. R. Salem, and D. J. Strickland ( 2008 ), Thermospheric density in the Earth's magnetic cusp as observed by the Streak mission, Geophys. Res. Lett., 35, L24103, doi: 10.1029/2008GL035972.en_US
dc.identifier.citedreferenceClilverd, M. A., C. J. Rodger, and T. Ulich ( 2006 ), The importance of atmospheric precipitation in storm‐time relativistic electron flux drop outs, Geophys. Res. Lett., 33, L01102, doi: 10.1029/2005GL024661.en_US
dc.identifier.citedreferenceClilverd, M. A., C. J. Rodger, R. M. Millan, J. G. Sample, M. Kokorowski, M. P. McCarthy, T. Ulich, T. Raita, A. J. Kavanagh, and E. Spanswick ( 2007 ), Energetic particle precipitation into the middle atmosphere triggered by a coronal mass ejection, J. Geophys. Res., 112, A12206, doi: 10.1029/2007JA012395.en_US
dc.identifier.citedreferenceColpitts, C. A., C. A. Cattell, J. U. Kozyra, and M. Parrot ( 2012 ), Satellite observations of banded VLF emissions in conjunction with energy‐banded ions during very large geomagnetic storms, J. Geophys. Res., 117, A10211, doi: 10.1029/2011JA017329.en_US
dc.identifier.citedreferenceCornilleau‐Wehrlin, N., et al. ( 2005 ), The STAFF‐DWP wave instrument on the DSP equatorial spacecraft: description and first results, Ann. Geophys., 23, 2785 – 2801.en_US
dc.identifier.citedreferenceCrowley, G., J. Schoendorf, R. G. Roble, and F. A. Marcos ( 1996 ), Cellular structures in the high‐latitude thermosphere, J. Geophys. Res., 101 ( A1 ), 211 – 223, doi: 10.1029/95JA02584.en_US
dc.identifier.citedreferenceCrowley, G., D. J. Knipp, K. A. Drake, J. Lei, E. Sutton, and H. Lühr ( 2010 ), Thermospheric density enhancements in the dayside cusp region during strong B y conditions, Geophys. Res. Lett., 37, L07110, doi: 10.1029/2009GL042143.en_US
dc.identifier.citedreferenceDandouras, I. S., H. Reme, J. Cao, and P. Escoubet ( 2009 ), Magnetospheric response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft, Adv. Space Res., 43, 618 – 623.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., T. I. Gombosi, C. P. T. Groth, K. G. Powell, and Q. F. Stout ( 2000 ), An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28, 1956 – 1965.en_US
dc.identifier.citedreferenceDe Zeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a global MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.en_US
dc.identifier.citedreferenceDelcourt, D. C., R. F. Martin Jr., and F. Alem ( 1994 ), A simple model of magnetic moment scattering in a field reversal, Geophys. Res. Lett., 21 ( 14 ), 1543 – 1546, doi: 10.1029/94GL01291.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239, doi: 10.1029/JZ064i012p02239.en_US
dc.identifier.citedreferenceDu, A. M., B. T. Tsurutani, and W. Sun ( 2008 ), Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs, J. Geophys. Res., 113, A10214, doi: 10.1029/2008JA013284.en_US
dc.identifier.citedreferenceDu, A. M., W. Sun, B. T. Tsurutani, R. N. Boroyev, and A. V. Moiseyev ( 2011 ), Observations of dawn‐dusk aligned polar cap aurora during the substorms of January 21, 2005, Planet. Space Sci., doi: 10.1016/j.pss.2011.06.021.en_US
dc.identifier.citedreferenced'Uston, C., et al. ( 1977 ), Energetic properties of interplanetary plasma at the Earth's orbit following the August 4, 1972 flare, Solar Phys., 51, 217.en_US
dc.identifier.citedreferenceEbihara, Y., M.‐C. Fok, T. J. Immel, and P. C. Brandt ( 2011 ), Rapid decay of storm time ring current due to pitch angle scattering in curved field line, J. Geophys. Res., 116, A03218, doi: 10.1029/2010JA016000.en_US
dc.identifier.citedreferenceEcher, E., W. D. Gonzalez, and B. T. Tsurutani ( 2008 ), Interplanetary conditions leading to superintense geomagnetic storms ( Dst < −250 nT) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, doi: 10.1029/2007GL031755.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 2003 ), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108 ( A3 ), 1116, doi: 10.1029/2001JA009202.en_US
dc.identifier.citedreferenceEngelhardt, W. ( 2005 ), Is a plasma diamagnetic?, Physics Essays, 18 ( 4 ), arXiv:physics/0510139v2 [physics.plasm‐ph].en_US
dc.identifier.citedreferenceEscoubet, C. P., M. Fehringer, and M. Goldstein ( 2001 ), The Cluster mission, Ann. Geophys., 19, 1197.en_US
dc.identifier.citedreferenceEvans, D. S., and M. S. Greer ( 2000 ), NOAA Technical Memorandum OAR SEC‐93, Boulder, Colo.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery ( 2007 ), Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi: 10.1029/2006JA011867.en_US
dc.identifier.citedreferenceFejer, B. G., and J. T. Emmert ( 2003 ), Low‐latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm, J. Geophys. Res., 108 ( A12 ), 1240, doi: 10.1029/2001JA000188.en_US
dc.identifier.citedreferenceFejer, B. G., and L. Scherliess ( 1995 ), Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances, Geophys. Res. Lett., 22, 851 – 854, doi: 10.1029/95GL00390.en_US
dc.identifier.citedreferenceFejer, B. G., and L. Scherliess ( 1997 ), Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102 ( A11 ), 24,047 – 24,056, doi: 10.1029/97JA02164.en_US
dc.identifier.citedreferenceFejer, B. G., R. W. Spiro, R. A. Wolf, and J. C. Foster ( 1990 ), Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results, Ann. Geophys., 8 ( 6 ), 441 – 454.en_US
dc.identifier.citedreferenceFoster, J. C., and H. B. Vo ( 2002 ), Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 107 ( A12 ), 1475, doi: 10.1029/2002JA009409.en_US
dc.identifier.citedreferenceFoullon, C., et al. ( 2007 ), Multi‐spacecraft study of the 21 January 2005 ICME: Evidence of current sheet substructure near the periphery of a strongly expanding fast magnetic cloud, Solar Phys., 244, 139 – 165.en_US
dc.identifier.citedreferenceFujimoto, M., T. Mukai, A. Matsuoka, Y. Saito, H. Hayakawa, S. Kokubun, and R. P. Lepping ( 2000 ), Multi‐point observations of cold‐dense plasma sheet and its relation with tail‐LLBL, Adv. Space Res., 25 ( 7/8 ), 1607 – 1616.en_US
dc.identifier.citedreferenceFujimoto, M., T. Mukai, and S. Kokubun ( 2002 ), Cold‐dense plasma sheet and hot‐dense ions in the inner magnetosphere, Adv. Space Res., 30 ( 10 ), 2279 – 2288.en_US
dc.identifier.citedreferenceFujimoto, M., T. Mukai, and S. Kokubun ( 2005 ), The structure of the plasma sheet under northward IMF, in Frontiers in Magnetospheric Plasma Physics – Celebrating 10 Years of Geotail Operation, COSPAR Colloquia Series, vol. 16, pp. 19 – 27, Elsevier Ltd., London, U. K.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. S. Evans ( 1987 ), Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data, J. Geophys. Res., 92 ( A7 ), 7606 – 7618, doi: 10.1029/JA092iA07p07606.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., G. H. Millward, A. D. Richmond, and M. V. Codrescu ( 2002 ), Storm‐time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys., 64, 1383 – 1391.en_US
dc.identifier.citedreferenceGarner, T. W., R. A. Wolf, R. W. Spiro, W. J. Burke, B. G. Fejer, S. Sazykin, J. L. Roeder, and M. R. Hairston ( 2004 ), Magnetospheric electric fields and plasma sheet injection to low L‐shells during the 4–5 June 1991 magnetic storm: Comparison between the Rice Convection Model and observations, J. Geophys. Res., 109, A02214, doi: 10.1029/2003JA010208.en_US
dc.identifier.citedreferenceGary, J. B., R. A. Heelis, and J. P. Thayer ( 1995 ), Summary of field aligned Poynting flux observations from DE2, Geophys. Res. Lett., 22 ( 14 ), 1861 – 1864, doi: 10.1029/95GL00570.en_US
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497.en_US
dc.identifier.citedreferenceGoldstein, J., B. R. Sandel, M. F. Thonsen, M. Spasojevic, and P. H. Reiff ( 2004 ), Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes, J. Geophys. Res., 109, A03202, doi: 10.1029/2003JA010281.en_US
dc.identifier.citedreferenceGombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semirelativistic magnetohydrodynamics and physics based convergence acceleration, J. Comput. Phys., 177, 176 – 205.en_US
dc.identifier.citedreferenceGonzalez, W. D., and E. Echer ( 2005 ), A study on the peak Dst and peak negative B z relationship during intense geomagnetic storms, Geophys. Res. Lett., 32, L18103, doi: 10.1029/2005GL023486.en_US
dc.identifier.citedreferenceGonzalez, W. D., et al. ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99 ( A4 ), 5771 – 5792, doi: 10.1029/93JA02867.en_US
dc.identifier.citedreferenceGreenspan, M. E., C. E. Rasmussen, W. J. Burke, and M. A. Abdu ( 1991 ), Equatorial density depletions observed at 840 km during the Great Magnetic Storm of March 1989, J. Geophys. Res., 96, 13,931 – 13,942, doi: 10.1029/91JA01264.en_US
dc.identifier.citedreferenceHagan, M. E., and J. M. Forbes ( 2002 ), Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107 ( D24 ), 4754, doi: 10.1029/2001JD001236.en_US
dc.identifier.citedreferenceHagan, M. E., and J. M. Forbes ( 2003 ), Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108 ( A2 ), 1062, doi: 10.1029/2002JA009466.en_US
dc.identifier.citedreferenceHairston, M. R., R. A. Heelis, and F. J. Rich ( 1998 ), Analysis of the ionospheric cross polar cap potential drop using DMSP data during the National Space Weather Program study period, J. Geophys. Res., 103 ( A11 ), 26,337 – 26,347, doi: 10.1029/97JA03241.en_US
dc.identifier.citedreferenceHardy, D. A., L. K. Schmidt, M. S. Gussenhoven, F. J. Marshall, H. C. Yeh, T. L. Shumaker, A. Huber, and J. Pantazis ( 1984 ), Precipitating electron and ion detectors (SSJ/4) for block 5D/Flights 4–10 DMSP satellites: Calibration and data presentation, Tech. Rep., AFGL‐TR‐84‐0317, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.en_US
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, Y. Saito, and T. Mukai ( 2004 ), Dense and stagnant ions in the low‐latitude boundary region under northward interplanetary magnetic field, Geophys. Res. Lett., 31, L06802, doi: 10.1029/2003GL019120.en_US
dc.identifier.citedreferenceHedin, A. E., N. W. Spencer, H. G. Mayr, and H. S. Porter ( 1981 ), Semiempirical modeling of thermospheric magnetic storms, J. Geophys. Res., 86 ( A5 ), 3515 – 3518, doi: 10.1029/JA086iA05p03515.en_US
dc.identifier.citedreferenceHuang, C.‐S., J. C. Foster, and M. C. Kelley ( 2005a ), Long‐duration penetration of the interplanetary electric field to the low latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, doi: 10.1029/2005JA011202.en_US
dc.identifier.citedreferenceHuang, C. Y., W. J. Burke, and C. S. Lin ( 2005b ), Ion precipitation in the dawn sector during geomagnetic storms, J. Geophys. Res., 110, A11213, doi: 10.1029/2005JA011116.en_US
dc.identifier.citedreferenceHuang, C.‐S., F. J. Rich, and W. J. Burke ( 2010 ), Storm time electric fields in the equatorial ionosphere observed near the dusk meridian, J. Geophys. Res., 115, A08313, doi: 10.1029/2009JA015150.en_US
dc.identifier.citedreferenceHudson, M. K., S. R. Elkington, J. G. Lyon, and C. C. Goodrich ( 2000 ), Increase in relativistic electron flux in the inner magnetosphere: ULF wave mode structure, Adv. Space Res., 25, 2327 – 2337.en_US
dc.identifier.citedreferenceImber, S. M., S. E. Milan, and B. Hubert ( 2006 ), The auroral and ionospheric flow signatures of dual lobe reconnection, Ann. Geophys., 24, 3115 – 3129.en_US
dc.identifier.citedreferenceIyemori, T. ( 1990 ), Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations, J. Geomagn. Geoelectr., 42, 1249 – 1265.en_US
dc.identifier.citedreferenceJaggi, R. K., and R. A. Wolf ( 1973 ), Self‐consistent calculation of the motion of a sheet of ions in the magnetosphere, J. Geophys. Res., 78 ( 16 ), 2852 – 2866, doi: 10.1029/JA078i016p02852.en_US
dc.identifier.citedreferenceJanhunen, P., and M. Palmroth ( 2001 ), Some observational phenomena are well reproduced by our global MHD while others are not: Remarks on what, why, and how, Adv. Space Res., 28 ( 12 ), 1685 – 1691.en_US
dc.identifier.citedreferenceKamide, Y., and S.‐I. Akasofu ( 1983 ), Notes on the auroral electrojet indices, Rev. Geophys. Space Phys., 27 ( 7 ), 1647 – 1656.en_US
dc.identifier.citedreferenceKamide, Y., and G. Rostoker ( 2004 ), What is the physical meaning of the AE index?, Eos Trans. AGU, 85 ( 19 ), 188 – 192, doi: 10.1029/2004EO190010.en_US
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐ to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.en_US
dc.identifier.citedreferenceKelley, M. C., B. G. Fejer, and C. A. Gonzales ( 1979 ), An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6 ( 4 ), 301 – 304, doi: 10.1029/GL006i004p00301.en_US
dc.identifier.citedreferenceKnipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake ( 2011 ), Extreme Poynting flux in the dayside thermosphere: Examples and statistics, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.en_US
dc.identifier.citedreferenceKokorowski, M., et al. ( 2008 ), Magnetospheric electric field variations caused by storm‐time shock fronts, Adv. Space Res., 42, 181 – 191.en_US
dc.identifier.citedreferenceKozyra, J. U., M.‐C. Fok, E. R. Sanchez, D. S. Evans, D. C. Hamilton, and A. F. Nagy ( 1998 ), The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986, J. Geophys. Res., 103 ( A4 ), 6801 – 6814, doi: 10.1029/97JA03330.en_US
dc.identifier.citedreferenceKozyra, J. U., et al. ( 2004 ), Coupling processes in the inner magnetosphere associated with midlatitude red auroras during superstorms, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract SM12B‐03.en_US
dc.identifier.citedreferenceKozyra, J. U., W. B. Manchester IV, C. P. Escoubet, S. T. Lepri, M. W. Liemohn, W. D. Gonzalez, M. W. Thomsen, and B. T. Tsurutani ( 2013 ), Earth's collision with a solar filament on 21 January 2005: Overview, J. Geophys. Res. Space Physics, 118, 5967 – 5978, doi: 10.1002/jgra.50567.en_US
dc.identifier.citedreferenceLangel, R. A., and R. H. Estes ( 1985 ), Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487 – 2494, doi: 10.1029/JB090iB03p02487.en_US
dc.identifier.citedreferenceLaundal, K. M., and N. Østgaard ( 2008 ), Persistent global proton aurora caused by high solar wind dynamic pressure, J. Geophys. Res., 113, A08231, doi: 10.1029/2008JA013147.en_US
dc.identifier.citedreferenceLavraud, B., et al. ( 2005 ), Characteristics of the magnetosheath electron boundary layer under northward IMF: Implications for high‐latitude reconnection, J. Geophys. Res., 110, A06209, doi: 10.1029/2004JA010808.en_US
dc.identifier.citedreferenceLavraud, B., M. F. Thomsen, B. Lefebvre, S. J. Schwartz, K. Seki, T. D. Phan, Y. L. Wang, A. Fazakerley, H. Re'me, and A. Balogh ( 2006 ), Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF, J. Geophys. Res., 111, A05211, doi: 10.1029/2005JA011266.en_US
dc.identifier.citedreferenceLemaire, J. F. ( 2000 ), The formation plasmaspheric plumes, Phys. Chem. Earth, Part C, 25, 9 – 17.en_US
dc.identifier.citedreferenceLi, W., J. Raeder, J. Dorelli, M. Øieroset, and T. D. Phan ( 2005 ), Plasma sheet formation during long period of northward IMF, Geophys. Res. Lett., 32, L12S08, doi: 10.1029/2004GL021524.en_US
dc.identifier.citedreferenceLi, W., J. Raeder, M. F. Thomsen, and B. Lavraud ( 2008 ), Solar wind plasma entry into the magnetosphere under northward IMF conditions, J. Geophys. Res., 113, A04204, doi: 10.1029/2007JA012604.en_US
dc.identifier.citedreferenceLi, W., D. Knipp, J. Lei, and J. Raeder ( 2011 ), The relation between dayside local Poynting flux enhancement and cusp reconnection, J. Geophys. Res., 116, A08301, doi: 10.1029/2011JA016566.en_US
dc.identifier.citedreferenceLi, X., et al. ( 2006 ), Modeling of 1–2 September 1859 super magnetic storm, Adv. Space Res., 38, 273 – 279.en_US
dc.identifier.citedreferenceLiemohn, M. W., J.‐C. Zhang, M. F. Thomsen, J. E. Borovsky, J. U. Kozyra, and R. Ilie ( 2008 ), Plasma properties of superstorms at geosynchronous orbit: How different are they?, Geophys. Res. Lett., 35, L06S06, doi: 10.1029/2005JA011202.en_US
dc.identifier.citedreferenceLiou, K., P. T. Newell, J.‐H. Shue, C.‐I. Meng, Y. Miyashita, H. Kojima, and H. Matsumoto ( 2007 ), “Compression aurora”: Particle precipitation driven by long‐duration high solar wind ram pressure, J. Geophys. Res., 112, A11216, doi: 10.1029/2007JA012443.en_US
dc.identifier.citedreferenceLiu, H., H. Lühr, V. Henize, and W. Köhler ( 2005a ), Global distribution of the thermospheric total mass density derived from CHAMP, J. Geophys. Res., 110, A04301, doi: 10.1029/2004JA010741.en_US
dc.identifier.citedreferenceLiu, R., S.‐Y. Ma, and H. Lühr ( 2011 ), Predicting storm‐time thermospheric mass density variations at CHAMP and GRACE altitudes, Ann. Geophys., 29, 443 – 453.en_US
dc.identifier.citedreferenceLiu, Z. X., C. P. Escoubet, Z. Pu, H. Laakso, J. K. Shi, C. Shen, and M. Hapgood ( 2005b ), The Double Star mission, Ann. Geophys., 23, 2707 – 2712.en_US
dc.identifier.citedreferenceLu, G., A. D. Richmond, B. A. Emery, and R. G. Roble ( 1995 ), Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on Joule heating and field‐aligned current, J. Geophys. Res., 100 ( A10 ), 19,643 – 19,659, doi: 10.1029/95JA00766.en_US
dc.identifier.citedreferenceLu, G., et al. ( 1996 ), High‐latitude ionospheric electrodynamics as determined by the AMIE procedure for the conjunctive SUNDIAL/ATLAS‐1/GEM period of March 28–29, 1992, J. Geophys. Res., 101 ( A12 ), 26,697 – 26,718, doi: 10.1029/96JA00513.en_US
dc.identifier.citedreferenceLu, G., L. Goncharenko, M. J. Nicolls, A. Maute, A. Coster, and L. J. Paxton ( 2012 ), Ionospheric and thermospheric variations associated with prompt penetration electric fields, J. Geophys. Res., 117, A08312, doi: 10.1029/2012JA017769.en_US
dc.identifier.citedreferenceLu, G., J. D. Huba, and C. Valladares ( 2013 ), Modeling ionospheric super‐fountain effect based on the coupled TIMEGCM‐SAMI3, J. Geophys. Res. Space Physics, 118, 2527 – 2535, doi: 10.1002/jgra.50256.en_US
dc.identifier.citedreferenceLühr, H., et al. ( 1986a ), In situ magnetic field measurements during AMPTE solar wind Li + releases, J. Geophys. Res., 91 ( A2 ), 1261 – 1270, doi: 10.1029/JA091iA02p01261.en_US
dc.identifier.citedreferenceLühr, H., D. Southwood, N. Klocker, M. Dunlop, W. Mier‐Jedrzejowicz, R. Rijnbeek, M. Six, B. Häusler, and M. Acuna ( 1986b ), In‐situ magnetic field observations of AMPTE's artificial comet, Nature, 320, 708 – 711.en_US
dc.identifier.citedreferenceLühr, H., M. Rother, S. Maus, W. Mai, and D. Cooke ( 2003 ), The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modeling, Geophys. Res. Lett., 30 ( 17 ), 1906, doi: 10.1029/2003GL017407.en_US
dc.identifier.citedreferenceLühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt ( 2004 ), Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.en_US
dc.identifier.citedreferenceMac‐Mahon, R. M., and W. D. Gonzalez ( 1997 ), Energetics during the main phase of geomagnetic superstorms, J. Geophys. Res., 102 ( A7 ), 14,199 – 14,207, doi: 10.1029/97JA01151.en_US
dc.identifier.citedreferenceManchester, W. B., IV, et al. ( 2006 ), Modeling the Sun‐to‐Earth propagation of a very fast CME, Adv. Space Res., 38, 253 – 262.en_US
dc.identifier.citedreferenceManchester, W. B., IV, J. U. Kozyra, S. T. Lepri, and B. Lavraud ( 2014 ), Simulation of magnetic cloud erosion during propagation, J. Geophys. Res. Space Physics, doi: 10.1002/2014JA019882, in press.en_US
dc.identifier.citedreferenceMannucci, A., B. Wilson, D. Yuan, C. Ho, U. Lindqwister, and T. Runge ( 1998 ), A global mapping technique for GPS‐derived ionospheric total electron content measurements, Radio Sci., 33, 565 – 582, doi: 10.1029/97RS02707.en_US
dc.identifier.citedreferenceMannucci, A. J., B. Iijima, L. Sparks, X. Q. Pi, B. Wilson, and U. Lindqwister ( 1999 ), Assessment of global TEC mapping using a three‐dimensional electron density model, J. Atmos. Sol. Terr. Phys., 61, 1227 – 1236, doi: 10.1016/S1364‐6826(99)00053‐X.en_US
dc.identifier.citedreferenceMannucci, A. J., B. T. Tsurutani, B. A. Iijima, A. Komjathy, A. Saito, W. D. Gonzalez, F. L. Guarnieri, J. U. Kozyra, and R. Skoug ( 2005 ), Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 Halloween Storms, Geophys. Res. Lett., 32, L12S02, doi: 10.1029/2004GL021467.en_US
dc.identifier.citedreferenceMaruyama, N., et al. ( 2007 ), Modeling storm‐time electrodynamics of the low‐latitude ionosphere‐thermosphere system: Can long lasting disturbance electric fields be accounted for?, J. Atmos. Sol. Terr. Phys., 69, 1182 – 1199.en_US
dc.identifier.citedreferenceMcPherron, R. L. ( 1997 ), The role of substorms in the generation of magnetic storms, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., p. 131, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceMende, S. B., et al. ( 2000 ), Far ultraviolet imaging from the IMAGE spacecraft, 3, Spectral imaging of Lyman alpha and OI 135.6 nm, Space Sci. Rev., 91, 287 – 318.en_US
dc.identifier.citedreferenceMitchell, D. G., et al. ( 2000 ), High Energy Neutral Atom (HEN A) Imager for the IM AGE Mission, Space Sci. Rev., 91, 67 – 112.en_US
dc.identifier.citedreferenceMiyashita, Y., et al. ( 2005 ), Geotail observations of signatures in the near‐Earth magnetotail for the extremely intense substorms of the 30 October 2003 storm, J. Geophys. Res., 110, A09S25, doi: 10.1029/2005JA011070.en_US
dc.identifier.citedreferenceMunoz, P. R., A. C.‐L. Chian, R. A. Miranda, and M. Yamada ( 2010 ), in Solar and Stellar Variability: Impact on Earth and Planets, Proc. IAU Symp. No. 264, edited by A. G. Kosovichev, A. H. Andrei, and J.‐P. Rozelot, pp. 369 – 372, International Astronomical Union, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1994 ), Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions, J. Geophys. Res., 99 ( A1 ), 273 – 286, doi: 10.1029/93JA02273.en_US
dc.identifier.citedreferenceNewell, P. T., et al. ( 1998 ), Characterizing the state of the magnetosphere: Testing the ion precipitation maxima latitude (b2i) and the ion isotropy boundary, J. Geophys. Res., 103, 4739 – 4745, doi: 10.1029/97JA03622.en_US
dc.identifier.citedreferenceNi, B., R. M. Thorne, Y. Y. Shprits, K. G. Orlova, and N. P. Meredith ( 2011 ), Chorus‐driven resonant scattering of diffuse auroral electrons in nondipolar magnetic fields, J. Geophys. Res., 116, A06225, doi: 10.1029/2011JA016453.en_US
dc.identifier.citedreferenceNishino, M., T. Terasawa, and M. Hoshino ( 2002 ), Increase of the tail plasma content during the northward interplanetary magnetic field intervals: Case studies, J. Geophys. Res., 107, doi: 10.1029/2002JA0009268.en_US
dc.identifier.citedreferenceO'Brien, T. P., and R. L. McPherron ( 2000 ), Evidence against an independent solar wind density driver of the terrestrial ring current, Geophys. Res. Lett., 27 ( 23 ), 3797 – 3799, doi: 10.1029/2000GL012125.en_US
dc.identifier.citedreferenceØieroset, M., J. Raeder, T. D. Phan, S. Wing, J. P. McFadden, W. Li, M. Fujimoto, H. Re`me, and A. Balogh ( 2005 ), Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003, Geophys. Res. Lett., 32, L12S07, doi: 10.1029/2004GL021523.en_US
dc.identifier.citedreferenceØieroset, M., T. D. Phan, V. Angelopoulos, J. P. Eastwood, J. McFadden, D. Larson, C. W. Carlson, K.‐H. Glassmeier, M. Fujimoto, and J. Raeder ( 2008 ), THEMIS multi‐spacecraft observations of magnetosheath plasma penetration deep into the dayside low latitude magnetosphere for northward and strong B y IMF, Geophys. Res. Lett., 35, L17S11, doi: 10.1029/2008GL033661.en_US
dc.identifier.citedreferencePalmroth, M., T. V. Laitinen, and T. I. Pulkkinen ( 2006 ), Magnetopause energy and mass transfer: Results from a global MHD simulation, Ann. Geophys., 24, 3467.en_US
dc.identifier.citedreferencePark, K. S., T. Ogino, and R. J. Walker ( 2006 ), On the importance of antiparallel reconnection when the dipole tilt and IMF B y are nonzero, J. Geophys. Res., 111, A05202, doi: 10.1029/2004JA010972.en_US
dc.identifier.citedreferenceParrot, M., A. Buzzi, O. Santolík, J. J. Berthelier, J. A. Sauvaud, and J. P. Lebreton ( 2006 ), New observations of electromagnetic harmonic ELF emissions in the ionosphere by the DEMETER satellite during large magnetic storms, J. Geophys. Res., 111, A08301, doi: 10.1029/2005JA011583.en_US
dc.identifier.citedreferencePaxton, L. J., et al. ( 1999 ), Global ultraviolet imager (GUVI): Measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission, Proc. SPIE Int. Soc. Opt. Eng., 3756, 256 – 276.en_US
dc.identifier.citedreferencePaxton, L. J., et al. ( 2004 ), GUVI: A hyperspectral imager for geospace, in Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, Proc. SPIE, vol. 5660, edited by C. A. Nardell et al., pp. 228 – 240, doi: 10.1117/12.579171.en_US
dc.identifier.citedreferencePaznukhov, V. V., B. W. Reinisch, P. Song, X. Huang, T. W. Bullett, and O. Veliz ( 2007 ), Formation of an F3 layer in the equatorial ionosphere: A result from strong IMF changes, J. Atmos. Sol. Terr. Phys., 69, 1292 – 1304.en_US
dc.identifier.citedreferencePeterson, T. C., P. A. Stott, and S. Herring (Eds.) ( 2012 ), Explaining extreme events of 2011 from a climate perspective, Bull. Am. Meteorol. Soc., 93, 1041 – 1067.en_US
dc.identifier.citedreferencePeterson, T. C., M. P. Hoerling, P. A. Stott, and S. Herring (Eds.) ( 2013 ), Explaining extreme events of 2012 from a climate perspective, Bull. Am. Meteorol. Soc., 94 ( 9 ), S1 – S74.en_US
dc.identifier.citedreferencePhan, T. D., R. P. Lin, S. A. Fuselier, and M. Fujimoto ( 2000 ), Wind observations of mixed magnetosheath‐plasma sheet ions deep inside the magnetosphere, J. Geophys. Res., 105, 5497 – 5505, doi: 10.1029/1999JA900455.en_US
dc.identifier.citedreferencePohjolainen, S., et al. ( 2007 ), Solar Phys., 244, 167 – 188.en_US
dc.identifier.citedreferencePotapov, A. S., and T. N. Polyushkina ( 2010 ), Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons, Geomagn. Aeron., 50 ( 8 ), 950 – 957.en_US
dc.identifier.citedreferencePowell, K., P. Roe, T. Linde, T. Gombosi, and D. D. Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRae, I. J., et al. ( 2010 ), Comparison of the open‐closed separatrix in a global magnetospheric simulation with observations: The role of the ring current, J. Geophys. Res., 115, A08216, doi: 10.1029/2009JA015068.en_US
dc.identifier.citedreferenceRaeder, J., R. J. Walker, and M. Ashour‐Abdalla ( 1995 ), The structure of the distant geomagnetic tail during long periods of northward IMF, Geophys. Res. Lett., 22 ( 4 ), 349 – 352, doi: 10.1029/94GL03380.en_US
dc.identifier.citedreferenceSmith, J. P., M. F. Thomsen, J. E. Borovsky, and M. Collier ( 1999 ), Solar wind density as a driver for the ring current in mild storms, Geophys. Res. Lett., 26 ( 13 ), 1797 – 1800, doi: 10.1029/1999GL900341.en_US
dc.identifier.citedreferenceRaeder, J., J. Berchem, M. Ashour‐Abdalla, L. A. Frank, W. R. Paterson, K. L. Ackerson, R. P. Lepping, S. Kokubun, T. Yamamoto, and S. A. Slavin ( 1997 ), Boundary layer formation in the magnetotail: Geotail observations and comparisons with a global MHD model, Geophys. Res. Lett., 24, 951 – 954, doi: 10.1029/97GL00218.en_US
dc.identifier.citedreferenceReme, H., et al. ( 2005 ), The HIA instrument on board the Tan Ce 1 Double Star near‐equatorial spacecraft and its first results, Ann. Geophys., 23, 2757 – 2774.en_US
dc.identifier.citedreferenceRentz, S., and H. Lühr ( 2008 ), Climatology of the cusp‐related thermospheric mass density anomaly, as derived from CHAMP observations, Ann. Geophys., 26, 2807 – 2823.en_US
dc.identifier.citedreferenceRich, F. J., and M. Hairston ( 1994 ), Large‐scale convection patterns observed by DMSP, J. Geophys. Res., 79, 3827 – 3844, doi: 10.1029/93JA03296.en_US
dc.identifier.citedreferenceRichmond, A. D., and Y. Kamide ( 1988 ), Mapping electrodynamic features of the high‐latitude ionosphere from localized observations: Technique, J. Geophys. Res., 93, 5741 – 5759, doi: 10.1029/JA093iA06p05741.en_US
dc.identifier.citedreferenceRidley, A. J., and M. W. Liemohn ( 2002 ), A model‐derived storm time asymmetric ring current driven electric field description, J. Geophys. Res., 107 ( A8 ), 1151, doi: 10.1029/2001JA000051.en_US
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. DeZeeuw ( 2004 ), Ionospheric control of the magnetosphere: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceRoble, R. G. ( 1995 ), Energetics of the mesosphere and thermosphere, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophys. Monogr. Ser., vol. 87, pp. 1 – 21, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceRoble, R. G., and E. C. Ridley ( 1994 ), A thermosphere‐ionosphere‐mesosphere electrodynamics general circulation model (time‐GCM): Equinox solar cycle minimum simulations (30–500 km), Geophys. Res. Lett., 21, 417 – 420, doi: 10.1029/93GL03391.en_US
dc.identifier.citedreferenceRosenqvist, L., H. Opgenoorth, S. Buchert, I. McCrea, O. Amm, and C. Lathuillere ( 2005 ), Extreme solar‐terrestrial events of October 2003: High‐latitude and Cluster observations of the large geomagnetic disturbances on 30 October, J. Geophys. Res., 110, A09S23, doi: 10.1029/2004JA010927.en_US
dc.identifier.citedreferenceRother, M., K. Schlegel, and H. Lühr ( 2007 ), CHAMP observation of intense kilometer‐scale field‐aligned currents, evidence for an ionospheric Alfven resonator, Ann. Geophys., 25, 1603 – 1615.en_US
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), Semiannual variation of geomagnetic activity, J. Geophys. Res., 78 ( 1 ), 92 – 108, doi: 10.1029/JA078i001p00092.en_US
dc.identifier.citedreferenceSadler, F. B., M. Lessard, E. Lund, A. Otto, and H. Lühr ( 2012 ), Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp, J. Atmos. Sol. Terr. Phys., 87–88, 82 – 90.en_US
dc.identifier.citedreferenceSahai, Y., et al. ( 2011 ), Studies of ionospheric F‐region response in the Latin American sector during the geomagnetic storm of 21–22 January 2005, Ann. Geophys., 29, 919 – 929.en_US
dc.identifier.citedreferenceSantos, A. M., M. A. Abdu, J. H. A. Sobral, D. Koga, P. A. B. Nogueira, and C. M. N. Candido ( 2012 ), Strong longitudinal difference in ionospheric responses over Fortaleza (Brazil) and Jicamarca (Peru) during the January 2005 magnetic storm, dominated by northward IMF, J. Geophys. Res., 117, A08333, doi: 10.1029/2012JA017604.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.