Show simple item record

Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysis

dc.contributor.authorMatheny, Ashley M.en_US
dc.contributor.authorBohrer, Gilen_US
dc.contributor.authorStoy, Paul C.en_US
dc.contributor.authorBaker, Ian T.en_US
dc.contributor.authorBlack, Andy T.en_US
dc.contributor.authorDesai, Ankur R.en_US
dc.contributor.authorDietze, Michael C.en_US
dc.contributor.authorGough, Chris M.en_US
dc.contributor.authorIvanov, Valeriy Y.en_US
dc.contributor.authorJassal, Rachhpal S.en_US
dc.contributor.authorNovick, Kimberly A.en_US
dc.contributor.authorSchäfer, Karina V. R.en_US
dc.contributor.authorVerbeeck, Hansen_US
dc.date.accessioned2014-09-03T16:52:03Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:52:03Z
dc.date.issued2014-07en_US
dc.identifier.citationMatheny, Ashley M.; Bohrer, Gil; Stoy, Paul C.; Baker, Ian T.; Black, Andy T.; Desai, Ankur R.; Dietze, Michael C.; Gough, Chris M.; Ivanov, Valeriy Y.; Jassal, Rachhpal S.; Novick, Kimberly A.; Schäfer, Karina V. R. ; Verbeeck, Hans (2014). "Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several landâ surface models: An NACP analysis." Journal of Geophysical Research: Biogeosciences 119(7): 1458-1473.en_US
dc.identifier.issn2169-8953en_US
dc.identifier.issn2169-8961en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108341
dc.description.abstractLand‐surface models use different formulations of stomatal conductance and plant hydraulics, and it is unclear which type of model best matches the observed surface‐atmosphere water flux. We use the North American Carbon Program data set of latent heat flux (LE) measurements from 25 sites and predictions from 9 models to evaluate models' ability to resolve subdaily dynamics of transpiration. Despite overall good forecast at the seasonal scale, the models have difficulty resolving the dynamics of intradaily hysteresis. The majority of models tend to underestimate LE in the prenoon hours and overestimate in the evening. We hypothesize that this is a result of unresolved afternoon stomatal closure due to hydrodynamic stresses. Although no model or stomata parameterization was consistently best or worst in terms of ability to predict LE, errors in model‐simulated LE were consistently largest and most variable when soil moisture was moderate and vapor pressure deficit was moderate to limiting. Nearly all models demonstrate a tendency to underestimate the degree of maximum hysteresis which, across all sites studied, is most pronounced during moisture‐limited conditions. These diurnal error patterns are consistent with models' diminished ability to accurately simulate the natural hysteresis of transpiration. We propose that the lack of representation of plant hydrodynamics is, in part, responsible for these error patterns. Key Points Land‐surface models produce subdaily patterns of latent heat flux error Error patterns are characterized by the stomatal conductance formulation used Current models lack a mechanism to simulate hysteretic transpirationen_US
dc.publisherStanford Univ.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherStomatal Conductanceen_US
dc.subject.otherAmerifluxen_US
dc.subject.otherEvapotranspirationen_US
dc.subject.otherLand‐Surface Modelsen_US
dc.subject.otherNACPen_US
dc.titleCharacterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108341/1/jgrg20246.pdf
dc.identifier.doi10.1002/2014JG002623en_US
dc.identifier.sourceJournal of Geophysical Research: Biogeosciencesen_US
dc.identifier.citedreferenceReichstein, M., et al. ( 2005 ), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm, Global Change Biol., 11 ( 9 ), 1424 – 1439.en_US
dc.identifier.citedreferencePost, W. M., R. C. Izaurralde, J. D. Jastrow, B. A. McCarl, J. E. Amonette, V. L. Bailey, P. M. Jardine, T. O. West, and J. Z. Zhou ( 2004 ), Enhancement of carbon sequestration in US soils, BioScience, 54 ( 10 ), 895 – 908.en_US
dc.identifier.citedreferenceRawls, W. J., D. L. Brakensiek, and K. E. Saxton ( 1982 ), Estimation of soil water properties, Trans. ASAE, 25 ( 5 ), 1316 – 1328.en_US
dc.identifier.citedreferenceRichardson, A. D., et al. ( 2006 ), A multi‐site analysis of random error in tower‐based measurements of carbon and energy fluxes, Agric. For. Meteorol., 136 ( 1–2 ), 1 – 18.en_US
dc.identifier.citedreferenceRichardson, A. D., D. Y. Hollinger, D. B. Dail, J. T. Lee, J. W. Munger, and J. O'Keefe ( 2009 ), Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests, Tree Physiol., 29 ( 3 ), 321 – 331.en_US
dc.identifier.citedreferenceRichardson, A. D., et al. ( 2012 ), Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis, Global Change Biol., 18 ( 2 ), 566 – 584.en_US
dc.identifier.citedreferenceSage, R. F., and D. S. Kubien ( 2007 ), The temperature response of C‐3 and C‐4 photosynthesis, Plant Cell Environ., 30 ( 9 ), 1086 – 1106.en_US
dc.identifier.citedreferenceSavabi, M. R., and C. O. Stockle ( 2001 ), Modeling the possible impact of increased CO 2 and temperature on soil water balance, crop yield and soil erosion, Environ. Modell. Software, 16 ( 7 ), 631 – 640.en_US
dc.identifier.citedreferenceSchaefer, K., G. J. Collatz, P. Tans, A. S. Denning, I. Baker, J. Berry, L. Prihodko, N. Suits, and A. Philpott ( 2008 ), Combined Simple Biosphere/Carnegie‐Ames‐Stanford Approach terrestrial carbon cycle model, J. Geophys. Res., 113, G03034, doi: 10.1029/2007JG000603.en_US
dc.identifier.citedreferenceSchaefer, K., et al. ( 2012 ), A model‐data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis, J. Geophys. Res., 117, G03010, doi: 10.1029/2012JG001960.en_US
dc.identifier.citedreferenceSchmid, H. P., C. S. B. Grimmond, F. Cropley, B. Offerle, and H. B. Su ( 2000 ), Measurements of CO 2 and energy fluxes over a mixed hardwood forest in the mid‐western United States, Agric. For. Meteorol., 103 ( 4 ), 357 – 374.en_US
dc.identifier.citedreferenceSchwalm, C. R., T. A. Black, K. Morgenstern, and E. R. Humphreys ( 2007 ), A method for deriving net primary productivity and component respiratory fluxes from tower‐based eddy covariance data: A case study using a 17‐year data record from a Douglas‐fir chronosequence, Global Change Biol., 13 ( 2 ), 370 – 385.en_US
dc.identifier.citedreferenceSchwalm, C. R., et al. ( 2010 ), A model‐data intercomparison of CO 2 exchange across North America: Results from the North American Carbon Program site synthesis, J. Geophys. Res., 115, G00H05, doi: 10.1029/2009JG001229.en_US
dc.identifier.citedreferenceSellers, P. J., M. D. Heiser, F. G. Hall, S. J. Goetz, D. E. Strebel, S. B. Verma, R. L. Desjardins, P. M. Schuepp, and J. I. MacPherson ( 1995 ), Effects of spatial variability in topography, vegetation cover and soil moisture on area‐averaged surface fluxes: A case study using the FIFE 1989 data, J. Geophys. Res., 100 ( D12 ), 25,607 – 25,629, doi: 10.1029/95JD02205.en_US
dc.identifier.citedreferenceSiqueira, M. B., G. G. Katul, D. A. Sampson, P. C. Stoy, J. Y. Juang, H. R. McCarthy, and R. Oren ( 2006 ), Multiscale model intercomparisons of CO 2 and H 2 O exchange rates in a maturing southeastern US pine forest, Global Change Biol., 12 ( 7 ), 1189 – 1207.en_US
dc.identifier.citedreferenceSperry, J. S., U. G. Hacke, R. Oren, and J. P. Comstock ( 2002 ), Water deficits and hydraulic limits to leaf water supply, Plant Cell Environ., 25 ( 2 ), 251 – 263.en_US
dc.identifier.citedreferenceStoy, P. C., G. G. Katul, M. B. S. Siqueira, J.‐Y. Juang, K. A. Novick, H. R. McCarthy, A. C. Oishi, J. M. Uebelherr, H.‐S. Kim, and R. Oren ( 2006 ), Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US, Global Change Biol., 12 ( 11 ), 2115 – 2135.en_US
dc.identifier.citedreferenceStoy, P. C., et al. ( 2013 ), Evaluating the agreement between measurements and models of net ecosystem exchange at different times and time scales using wavelet coherence: An example using data from the North American Carbon Program Site‐Level Interim Synthesis, Biogeosci. Discuss., 10 ( 2 ), 3039 – 3077.en_US
dc.identifier.citedreferenceThomas, C. K., B. E. Law, J. Irvine, J. G. Martin, J. C. Pettijohn, and K. J. Davis ( 2009 ), Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon, J. Geophys. Res., 114, G04006, doi: 10.1029/2009JG001010.en_US
dc.identifier.citedreferenceThomsen, J., G. Bohrer, A. M. Matheny, V. Y. Ivanov, L. He, H. Renninger, and K. Schäfer ( 2013 ), Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan, Forests, 4 ( 4 ), 1106 – 1120.en_US
dc.identifier.citedreferenceTuzet, A., A. Perrier, and R. Leuning ( 2003 ), A coupled model of stomatal conductance, photosynthesis and transpiration, Plant Cell Environ., 26, 1097 – 1116.en_US
dc.identifier.citedreferenceTyree, M. T., and J. S. Sperry ( 1989 ), Vulnerability of xylem to cavitation and embolism, Annu. Rev. Plant Physiol. Plant Mol. Biol, 40, 19 – 36.en_US
dc.identifier.citedreferenceTyree, M. T., and M. H. Zimmermann ( 2002 ), Xylem structure and the ascent of sap, in Xylem Structure and the Ascent of Sap, edited, p. i, Springer‐Verlag New York Inc., New York, NY; Springer‐Verlag GmbH & Co. KG, Berlin, Germany.en_US
dc.identifier.citedreferenceUrbanski, S., C. Barford, S. Wofsy, C. Kucharik, E. Pyle, J. Budney, K. McKain, D. Fitzjarrald, M. Czikowsky, and J. W. Munger ( 2007 ), Factors controlling CO 2 exchange on timescales from hourly to decadal at Harvard Forest, J. Geophys. Res., 112, G02020, doi: 10.1029/2006JG000293.en_US
dc.identifier.citedreferenceVerbeeck, H., K. Steppe, N. Nadezhdina, M. O. De Beeck, G. Deckmyn, L. Meiresonne, R. Lemeur, J. Cermak, R. Ceulemans, and I. A. Janssens ( 2007a ), Model analysis of the effects of atmospheric drivers on storage water use in Scots pine, Biogeosciences, 4 ( 4 ), 657 – 671.en_US
dc.identifier.citedreferenceVerbeeck, H., K. Steppe, N. Nadezhdina, M. Op de Beeck, G. Deckmyn, L. Meiresonne, R. Lemeur, J. Cermak, R. Ceulemans, and I. A. Janssens ( 2007b ), Stored water use and transpiration in Scots pine: A modeling analysis with ANAFORE, Tree Physiol., 27 ( 12 ), 1671 – 1685.en_US
dc.identifier.citedreferenceVerbeeck, H., P. Peylin, C. Bacour, D. Bonal, K. Steppe, and P. Ciais ( 2011 ), Seasonal patterns of CO 2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model, J. Geophys. Res., 116, G02018, doi: 10.1029/2010JG001544.en_US
dc.identifier.citedreferenceVerma, S. B., et al. ( 2005 ), Annual carbon dioxide exchange in irrigated and rainfed maize‐based agroecosystems, Agric. For. Meteorol., 131 ( 1–2 ), 77 – 96.en_US
dc.identifier.citedreferenceWeng, E., and Y. Luo ( 2008 ), Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis, J. Geophys. Res., 113, G03003, doi: 10.1029/2007JG000539.en_US
dc.identifier.citedreferenceWinters, A. J., M. A. Adams, T. M. Bleby, H. Rennenberg, D. Steigner, R. Steinbrecher, and J. Kreuzwieser ( 2009 ), Emissions of isoprene, monoterpene and short‐chained carbonyl compounds from Eucalyptus spp. in southern Australia, Atmos. Environ., 43 ( 19 ), 3035 – 3043.en_US
dc.identifier.citedreferenceWu, Y. P., S. G. Liu, and O. I. Abdul‐Aziz ( 2012 ), Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT, Clim. Change, 110 ( 3–4 ), 977 – 1003.en_US
dc.identifier.citedreferenceZhang, Q., S. Manzoni, G. Katul, A. Porporato, and D. Yang ( 2014 ), The hysteretic evapotranspiration—Vapor pressure deficit relation, J. Geophys. Res. Biogeosci., 119, 125 – 140, doi: 10.1002/2013JG002484.en_US
dc.identifier.citedreferenceZimmerman, M. H. ( 1983 ), Xylem Structure and the Ascent of Sap, 125 pp., Springer‐Verlag, Berlin.en_US
dc.identifier.citedreferenceAllen, C. D., et al. ( 2010 ), A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manage., 259 ( 4 ), 660 – 684.en_US
dc.identifier.citedreferenceArain, M. A., F. M. Yuan, and T. A. Black ( 2006 ), Soil‐plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada, Agric. For. Meteorol., 140 ( 1–4 ), 171 – 192.en_US
dc.identifier.citedreferenceBaker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. da Rocha ( 2008 ), Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res., 113, G00B01, doi: 10.1029/2007JG000644.en_US
dc.identifier.citedreferenceBall, J. T. ( 1988 ), An Analysis of Stomatal Conductance, 145 pp., Stanford Univ., Stanford, Calif.en_US
dc.identifier.citedreferenceBall, J. T., I. E. Woodrow, and J. A. Berry ( 1987 ), A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in Progress in Photosynthesis Research, edited by J. Biggins, pp. 221 – 224, Springer, Netherlands.en_US
dc.identifier.citedreferenceBarr, A. G., T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic ( 2004 ), Inter‐annual variability in the leaf area index of a boreal aspen‐hazelnut forest in relation to net ecosystem production, Agric. For. Meteorol., 126 ( 3–4 ), 237 – 255.en_US
dc.identifier.citedreferenceBeer, C., et al. ( 2010 ), Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate, Science, 329 ( 5993 ), 834 – 838.en_US
dc.identifier.citedreferenceBergeron, O., H. A. Margolis, T. A. Black, C. Coursolle, A. L. Dunn, A. G. Barr, and S. C. Wofsy ( 2007 ), Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada, Global Change Biol., 13 ( 1 ), 89 – 107.en_US
dc.identifier.citedreferenceBerry, J. A., D. J. Beerling, and P. J. Franks ( 2010 ), Stomata: Key players in the earth system, past and present, Curr. Opin. Plant Biol., 13 ( 3 ), 232 – 239.en_US
dc.identifier.citedreferenceBohrer, G., H. Mourad, T. A. Laursen, D. Drewry, R. Avissar, D. Poggi, R. Oren, and G. G. Katul ( 2005 ), Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics, Water Resour. Res., 41, W11404, doi: 10.1029/2005WR004181.en_US
dc.identifier.citedreferenceBradford, J. B., R. A. Birdsey, L. A. Joyce, and M. G. Ryan ( 2008 ), Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests, Global Change Biol., 14 ( 12 ), 2882 – 2897.en_US
dc.identifier.citedreferenceBrodribb, T. J., and H. Cochard ( 2008 ), Hydraulic failure defines the recovery and point of death in water‐stressed conifers, Plant Physiol., 149 ( 1 ), 575 – 584.en_US
dc.identifier.citedreferenceBrodribb, T. J., and N. M. Holbrook ( 2003 ), Stomatal closure during leaf dehydration, correlation with other leaf physiological traits, Plant Physiol., 132 ( 4 ), 2166 – 2173.en_US
dc.identifier.citedreferenceBrodribb, T. J., and N. M. Holbrook ( 2004 ), Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms, New Phytol., 162 ( 3 ), 663 – 670.en_US
dc.identifier.citedreferenceBrodribb, T. J., and N. M. Holbrook ( 2006 ), Declining hydraulic efficiency as transpiring leaves desiccate: Two types of response, Plant Cell Environ., 29 ( 12 ), 2205 – 2215.en_US
dc.identifier.citedreferenceBrodribb, T. J., and N. M. Holbrook ( 2007 ), Forced depression of leaf hydraulic conductance in situ: Effects on the leaf gas exchange of forest trees, Funct. Ecol., 21 ( 4 ), 705 – 712.en_US
dc.identifier.citedreferenceCampbell, G. S., and J. M. Norman ( 1998 ), An Introduction to Environmental Biophysics, 2nd ed., pp. xxi+286, Springer‐Verlag, Berlin, Germany; Springer‐Verlag New York, Inc., New York, N. Y.en_US
dc.identifier.citedreferenceChen, L. X., Z. Q. Zhang, Z. D. Li, J. W. Tang, P. Caldwell, and W. J. Zhang ( 2011 ), Biophysical control of whole tree transpiration under an urban environment in Northern China, J. Hydrol., 402 ( 3–4 ), 388 – 400, doi: 10.1016/j.jhydrol.2011.03.034.en_US
dc.identifier.citedreferenceChoat, B., et al. ( 2012 ), Global convergence in the vulnerability of forests to drought, Nature, 491 ( 7426 ), 752 – 756.en_US
dc.identifier.citedreferenceCollatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry ( 1991 ), Pysiological and environmental regulation of stomatal conductance, photosyntesis and transpiration: A model that includes a laminal boundary layer, Agric. For. Meteorol., 54 ( 2–4 ), 107 – 136, doi: 10.1016/0168‐1923(91)90002‐8.en_US
dc.identifier.citedreferenceCook, B. D., et al. ( 2004 ), Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA, Agric. For. Meteorol., 126 ( 3–4 ), 271 – 295.en_US
dc.identifier.citedreferenceDamour, G., T. Simonneau, H. Cochard, and L. Urban ( 2010 ), An overview of models of stomatal conductance at the leaf level, Plant Cell Environ., 33, 1419 – 1438.en_US
dc.identifier.citedreferenceDavis, K. J., P. S. Bakwin, C. X. Yi, B. W. Berger, C. L. Zhao, R. M. Teclaw, and J. G. Isebrands ( 2003 ), The annual cycles of CO 2 and H 2 O exchange over a northern mixed forest as observed from a very tall tower, Global Change Biol., 9 ( 9 ), 1278 – 1293.en_US
dc.identifier.citedreferencede Arellano, J. V. G., H. G. Ouwersloot, D. Baldocchi, and C. M. J. Jacobs ( 2014 ), Shallow cumulus rooted in photosynthesis, Geophys. Res. Lett., 41, 1796 – 1802, doi: 10.1002/2014GL059279.en_US
dc.identifier.citedreferenceDe Kauwe, M. G., et al. ( 2013 ), Forest water use and water use efficiency at elevated CO 2: A model‐data intercomparison at two contrasting temperate forest FACE sites, Global Change Biol., 19 ( 6 ), 1759 – 1779.en_US
dc.identifier.citedreferenceDesai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey ( 2005 ), Comparing net ecosystem exchange of carbon dioxide between an old‐growth and mature forest in the upper Midwest, USA, Agric. For. Meteorol., 128 ( 1–2 ), 33 – 55.en_US
dc.identifier.citedreferenceDietze, M. C. ( 2014 ), Gaps in knowledge and data driving uncertainty in models of photosynthesis, Photosynth. Res., 119 ( 1–2 ), 3 – 14.en_US
dc.identifier.citedreferenceDietze, M. C., et al. ( 2011 ), Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site‐level synthesis, J. Geophys. Res., 116, G04029, doi: 10.1029/2011JG001661.en_US
dc.identifier.citedreferenceEgea, G., A. Verhoef, and P. L. Vidale ( 2011 ), Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models, Agric. For. Meteorol., 151 ( 10 ), 1370 – 1384.en_US
dc.identifier.citedreferenceFeddes, R. A., P. Kowalik, K. Kolinska‐Malinka, and H. Zarandy ( 1976 ), Simulation of field water uptake by plants using a soil water dependent root extraction function, J. Hydrol., 31, 13 – 26.en_US
dc.identifier.citedreferenceFischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn ( 2007 ), Spatiotemporal variations in growing season exchanges of CO 2, H 2 O, and sensible heat in agricultural fields of the Southern Great Plains, Earth Interact., 11 ( 17 ), 1 – 21, doi: 10.1175/EI231.1.en_US
dc.identifier.citedreferenceFisher, J. B., T. A. DeBiase, Y. Qi, M. Xu, and A. H. Goldstein ( 2005 ), Evapotranspiration models compared on a Sierra Nevada forest ecosystem, Environ. Modell. Software, 20 ( 6 ), 783 – 796.en_US
dc.identifier.citedreferenceFlanagan, L. B., L. A. Wever, and P. J. Carlson ( 2002 ), Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland, Global Change Biol., 8 ( 7 ), 599 – 615.en_US
dc.identifier.citedreferenceFoken, T. ( 2008 ), The energy balance closure problem: An overview, Ecol. Appl., 18 ( 6 ), 1351 – 1367.en_US
dc.identifier.citedreferenceFolkers, A., K. Huve, C. Ammann, T. Dindorf, J. Kesselmeier, E. Kleist, U. Kuhn, R. Uerlings, and J. Wildt ( 2008 ), Methanol emissions from deciduous tree species: Dependence on temperature and light intensity, Plant biol. (Stuttgart, Germany), 10 ( 1 ), 65 – 75.en_US
dc.identifier.citedreferenceFord, C. R., R. M. Hubbard, B. D. Kloeppel, and J. M. Vose ( 2007 ), A comparison of sap flux‐based evapotranspiration estimates with catchment‐scale water balance, Agric. For. Meteorol., 145 ( 3–4 ), 176 – 185.en_US
dc.identifier.citedreferenceGarrity, S. R., K. Meyer, K. D. Maurer, B. Hardiman, and G. Bohrer ( 2012 ), Estimating plot‐level tree structure in a deciduous forest by combining allometric equations, spatial wavelet analysis and airborne LiDAR, Remote Sens. Lett., 3 ( 5 ), 443 – 451.en_US
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis ( 2013 ), Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest, Ecol. Appl., 23 ( 5 ), 1202 – 1215.en_US
dc.identifier.citedreferenceGrant, R. F., T. A. Black, D. Gaumont‐Guay, N. Kljun, A. G. Barrc, K. Morgenstern, and Z. Nesic ( 2006 ), Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys, Agric. For. Meteorol., 140 ( 1–4 ), 152 – 170, doi: 10.1016/j.agrformet.2006.01.012.en_US
dc.identifier.citedreferenceGriffis, T. J., T. A. Black, K. Morgenstern, A. G. Barr, Z. Nesic, G. B. Drewitt, D. Gaumont‐Guay, and J. H. McCaughey ( 2003 ), Ecophysiological controls on the carbon balances of three southern boreal forests, Agric. For. Meteorol., 117 ( 1–2 ), 53 – 71.en_US
dc.identifier.citedreferenceGu, L., T. Meyers, S. G. Pallardy, P. J. Hanson, B. Yang, M. Heuer, K. P. Hosman, J. S. Riggs, D. Sluss, and S. D. Wullschleger ( 2006 ), Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site, J. Geophys. Res., 111, D16102, doi: 10.1029/2006JD007161.en_US
dc.identifier.citedreferenceHickler, T., I. C. Prentice, B. Smith, M. T. Sykes, and S. Zaehle ( 2006 ), Implementing plant hydraulic architecture within the LPJ Dynamic Global Vegetation Model, Global Ecol. Biogeogr., 15 ( 6 ), 567 – 577.en_US
dc.identifier.citedreferenceHuntington, T. G., A. D. Richardson, K. J. McGuire, and K. Hayhoe ( 2009 ), Climate and hydrological changes in the northeastern United States: Recent trends and implications for forested and aquatic ecosystems, Can. J. For. Res., 39 ( 2 ), 199 – 212.en_US
dc.identifier.citedreferenceHuntzinger, D. N., et al. ( 2012 ), North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison, Ecol. Model., 232, 144 – 157.en_US
dc.identifier.citedreferenceHüve, K., M. M. Christ, E. Kleist, R. Uerlings, Ü. Niinemets, A. Walter, and J. Wildt ( 2007 ), Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata, J. Exp. Bot., 58 ( 7 ), 1783 – 1793.en_US
dc.identifier.citedreferenceJanott, M., S. Gayler, A. Gessler, M. Javaux, C. Klier, and E. Priesack ( 2011 ), A one‐dimensional model of water flow in soil‐plant systems based on plant architecture, Plant Soil, 341 ( 1–2 ), 233 – 256.en_US
dc.identifier.citedreferenceJarvis, P. G. ( 1976 ), The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. B‐Biol. Sci., 273, 593 – 610.en_US
dc.identifier.citedreferenceJasechko, S., Z. D. Sharp, J. J. Gibson, S. J. Birks, Y. Yi, and P. J. Fawcett ( 2013 ), Terrestrial water fluxes dominated by transpiration, Nature, 496 ( 7445 ), 347 – 350, doi: 10.1038/nature11983.en_US
dc.identifier.citedreferenceKatul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange ( 2012 ), Evapotranspiration: A process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system, Rev. Geophys., 50, RG3002, doi: 10.1029/2011RG000366.en_US
dc.identifier.citedreferenceKucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young‐Molling, N. Ramankutty, J. M. Norman, and S. T. Gower ( 2000 ), Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycle, 14 ( 3 ), 795 – 825.en_US
dc.identifier.citedreferenceLeMone, M. A., and W. T. Pennell ( 1976 ), The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure, Mon. Weather Rev., 104 ( 5 ), 524 – 539.en_US
dc.identifier.citedreferenceLeuning, R. ( 1995 ), A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants, Plant Cell Environ., 18, 339 – 355.en_US
dc.identifier.citedreferenceMa, S. Y., D. D. Baldocchi, L. K. Xu, and T. Hehn ( 2007 ), Inter‐annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California, Agric. For. Meteorol., 147 ( 3–4 ), 157 – 171.en_US
dc.identifier.citedreferenceMcAdam, S. A. M., and T. J. Brodribb ( 2014 ), Separating active and passive influences on stomatal control of transpiration, Plant Physiol., 164 ( 4 ), 1578 – 1586.en_US
dc.identifier.citedreferenceMcCaughey, J. H., M. R. Pejam, M. A. Arain, and D. A. Cameron ( 2006 ), Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada, Agric. For. Meteorol., 140 ( 1–4 ), 79 – 96.en_US
dc.identifier.citedreferenceMcCulloh, K. A., and J. S. Sperry ( 2005 ), Patterns in hydraulic architecture and their implications for transport efficiency, Tree Physiol., 25, 257 – 267.en_US
dc.identifier.citedreferenceMcCulloh, K. A., D. M. Johnson, F. C. Meinzer, S. L. Voelker, B. Lachenbruch, and J.‐C. Domec ( 2012 ), Hydraulic architecture of two species differing in wood density: Opposing strategies in co‐occurring tropical pioneer trees, Plant Cell Environ., 35 ( 1 ), 116 – 125.en_US
dc.identifier.citedreferenceMedvigy, D., S. C. Wofsy, J. W. Munger, D. Y. Hollinger, and P. R. Moorcroft ( 2009 ), Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, J. Geophys. Res., 114, G01002, doi: 10.1029/2008JG000812.en_US
dc.identifier.citedreferenceNave, L. E., et al. ( 2011 ), Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest, J. Geophys. Res., 116, G04016, doi: 10.1029/2011JG001758.en_US
dc.identifier.citedreferenceNiinemets, Ü., and M. Reichstein ( 2003 ), Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained, J. Geophys. Res., 108 ( D7 ), 4208, doi: 10.1029/2002JD002620.en_US
dc.identifier.citedreferenceNiyogi, D., K. Alapaty, S. Raman, and F. Chen ( 2009 ), Development and evaluation of a coupled photosynthesis‐based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications, J. Appl. Meteorol. Climatol., 48 ( 2 ), 349 – 368.en_US
dc.identifier.citedreferenceNovick, K. A., R. Oren, P. C. Stoy, M. B. S. Siqueira, and G. G. Katul ( 2009 ), Nocturnal evapotranspiration in eddy‐covariance records from three co‐located ecosystems in the Southeastern US: Implications for annual fluxes, Agric. For. Meteorol., 149 ( 9 ), 1491 – 1504.en_US
dc.identifier.citedreferenceO'Grady, A. P., D. Worledge, and M. Battaglia ( 2008 ), Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia, Agric. For. Meteorol., 148 ( 3 ), 453 – 465, doi: 10.1016/j.agrformet.2007.10.006.en_US
dc.identifier.citedreferenceOishi, A. C., R. Oren, and P. C. Stoy ( 2008 ), Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements, Agric. For. Meteorol., 148 ( 11 ), 1719 – 1732.en_US
dc.identifier.citedreferencePan, Y., et al. ( 2011 ), A large and persistent carbon sink in the world's forests, Science, 333 ( 6045 ), 988 – 993.en_US
dc.identifier.citedreferencePhillips, N. G., M. G. Ryan, B. J. Bond, N. G. McDowell, T. M. Hinckley, and J. Cermak ( 2003 ), Reliance on stored water increases with tree size in three species in the Pacific Northwest, Tree Physiol., 23 ( 4 ), 237 – 245.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.