Show simple item record

Effects of productivity, glaciation, and ventilation on late Quaternary sedimentary redox and trace element accumulation on the Vancouver Island margin, western Canada

dc.contributor.authorChang, Alice S.en_US
dc.contributor.authorPedersen, Thomas F.en_US
dc.contributor.authorHendy, Ingrid L.en_US
dc.date.accessioned2014-09-03T16:52:18Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:52:18Z
dc.date.issued2014-07en_US
dc.identifier.citationChang, Alice S.; Pedersen, Thomas F.; Hendy, Ingrid L. (2014). "Effects of productivity, glaciation, and ventilation on late Quaternary sedimentary redox and trace element accumulation on the Vancouver Island margin, western Canada." Paleoceanography 29(7): 730-746.en_US
dc.identifier.issn0883-8305en_US
dc.identifier.issn1944-9186en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108369
dc.description.abstractVariations in chalcophile and redox‐sensitive trace elements are examined at high‐resolution intervals from a ~50 kyr long sediment core (MD02‐2496) from the Vancouver Island margin. Enrichments of Ag, Cd, Re, U, and Mo above lithogenous levels, signifying sedimentary suboxia and anoxia, occurred during the early Holocene and Bølling/Allerød, and during warm interstadial events of Marine Isotope Stage (MIS) 3. Down‐core trace element profiles co‐vary with productivity proxy records (opal, CaCO 3 , and marine organic carbon), and with sedimentary nitrogen isotope ratios, which reflect variably enriched nitrate upwelled from intermediate waters that were transported northward from the Eastern Tropical North Pacific. The similarity of the MD02‐2496 record with records from the southern portion of the California Current System (CCS), and to the Greenland ice core oxygen isotope record during warm climate intervals, suggests that sedimentary redox conditions along the California Current responded to local productivity, to North Atlantic climate change and to tropical Pacific surface water processes via long‐distance teleconnections. Concentrations of trace elements and productivity proxies were relatively depleted during the Younger Dryas, cool stadial events of MIS 3, and in two episodes of glaciomarine sedimentation from ~14.7 to 30.5 kyr BP (last glacial maximum, LGM), and from 44 to 50.4 kyr BP. Cordilleran Ice Sheet advancement onto the Vancouver Island continental shelf during the LGM led to intervals of increased terrigenous sedimentation and greatly reduced productivity not seen in the southern portion of the CCS, and along with ventilation of North Pacific Intermediate Waters, resulted in brief sedimentary oxic conditions. Key Points Trace elements co‐vary with marine productivity proxies during warm climates Productivity controls pore water oxygen and sedimentary redox conditions Cordilleran ice sheet directly affected productivity and sedimentary redoxen_US
dc.publisherScandinavian University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNortheast Pacific Oceanen_US
dc.subject.otherSedimentary Redoxen_US
dc.subject.otherTrace Elementsen_US
dc.subject.otherProductivityen_US
dc.subject.otherCordilleran Glaciationen_US
dc.titleEffects of productivity, glaciation, and ventilation on late Quaternary sedimentary redox and trace element accumulation on the Vancouver Island margin, western Canadaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108369/1/palo20124.pdf
dc.identifier.doi10.1002/2013PA002581en_US
dc.identifier.sourcePaleoceanographyen_US
dc.identifier.citedreferenceOkazaki, Y., A. Timmermann, L. Menviel, N. Harada, A. Abe‐Ouchi, M. O. Chikamoto, A. Mouchet, and H. Asahi ( 2010 ), Deepwater formation in the North Pacific during the Last Glacial Termination, Science, 329 ( 5988 ), 200 – 204, doi: 10.1126/science.1190612.en_US
dc.identifier.citedreferenceSchmittner, A., E. D. Galbraith, S. W. Hostetler, T. F. Pedersen, and R. Zhang ( 2007 ), Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard‐Oeschger oscillations caused by variations of North Atlantic Deep Water subduction, Paleoceanography, 22, PA3207, doi: 10.1029/2006PA001384.en_US
dc.identifier.citedreferenceShimmield, G. B., and N. B. Price ( 1986 ), The behavior of molybdenum and manganese during early sediment diagenesis–offshore Baja California, Mexico, Mar. Chem., 19, 271 – 280, doi: 10.1016/0304-4203(86)90027-7.en_US
dc.identifier.citedreferenceSingh, S. P., S. K. Singh, and R. Bhushan ( 2011 ), Behavior of redox sensitive elements (U, Mo and Re) in the water column of the Bay of Bengal, Mar. Chem., 126, 76 – 88, doi: 10.1016/j.marchem.2011.04.001.en_US
dc.identifier.citedreferenceSohrin, Y., K. Isshiki, and T. Kuwamoto ( 1987 ), Tungsten in North Pacific waters, Mar. Chem., 22, 95 – 103, doi: 10.1016/0304‐4203(87)90051‐X.en_US
dc.identifier.citedreferenceStrickland, J. D. H., and T. R. Parsons ( 1968 ), A practical handbook of seawater analysis, Bulletin 167, Fisheries Research Board of Canada, Ottawa.en_US
dc.identifier.citedreferenceStuiver, M., and P. Grootes ( 2000 ), GISP2 oxygen isotope ratios, Quat. Res., 53, 277 – 284, doi: 10.1006/qres.2000.2127.en_US
dc.identifier.citedreferenceSundby, B., P. Martinez, and C. Gobeil ( 2004 ), Comparative geochemistry of cadmium, rhenium, uranium and molybdenum in continental margin sediments, Geochim. Cosmochim. Acta, 68, 2485 – 2493, doi: 10.1016/j.gca.2003.08.011.en_US
dc.identifier.citedreferenceTakahashi, K. ( 1998 ), The Bering and Okhotsk seas: Modern and past paleoceanographic changes and gateway impact, J. Asian Earth Sci., 16, 49 – 58, doi: 10.1016/S0743-9547(97)00048-2.en_US
dc.identifier.citedreferenceTalley, L. D. ( 1991 ), An Okhotsk Sea water anomaly: Implications for ventilation in the North Pacific, Deep Sea Res. Part A, 38, S171 – S190.en_US
dc.identifier.citedreferenceThomson, R. E., and M. V. Krassovski ( 2010 ), Poleward reach of the California Undercurrent extension, J. Geophys. Res., 115, C09027, doi: 10.1029/2010JC006280.en_US
dc.identifier.citedreferenceThomson, R. E., S. F. Mihály, and E. A. Kulikov ( 2007 ), Estuarine versus transient flow regimes in Juan de Fuca Strait, J. Geophys. Res., 112, C09022, doi: 10.1029/2006JC003925.en_US
dc.identifier.citedreferenceTribovillard, N., T. J. Algeo, T. Lyons, and A. Riboulleau ( 2006 ), Trace metals as paleoredox and palaeoproductivity proxies: An update, Chem. Geol., 232 ( 1–2 ), 12 – 32, doi: 10.1016/j.chemgeo.2006.02.012.en_US
dc.identifier.citedreferenceTuit, C., J. Waterbury, and G. Ravizza ( 2004 ), Diel variation of molybdenum and iron in marine diazotrophic cyanobacteria, Limnol. Oceanogr., 49, 978 – 990.en_US
dc.identifier.citedreferenceVan Scoy, K. A., D. B. Olson, and R. A. Fine ( 1991 ), Ventilation in the North Pacific intermediate waters: The role of the Alaskan Gyre, J. Geophys. Res., 96, 16,801 – 16,810, doi: 10.1029/91JC01783.en_US
dc.identifier.citedreferenceWagner, M., I. L. Hendy, J. L. McKay, and T. F. Pedersen ( 2013 ), Influence of biological productivity on silver and redox‐sensitive trace metal accumulation in Southern Ocean surface sediments, Pacific sector, Earth Planet. Sci. Lett., 380, 31 – 40, doi: 10.1016/j.epsl.2013.08.020.en_US
dc.identifier.citedreferenceWedepohl, K. H. ( 1971 ), Environmental influences on the chemical composition of shales and clays, in Physics and Chemistry of the Earth, vol. 8, edited by L. H. Ahrens et al., pp. 307 – 331, Pergamon, Oxford.en_US
dc.identifier.citedreferenceWyrtki, K. ( 1962 ), The oxygen minima in relation to ocean circulation, Deep Sea Res. Oceanogr. Abstr., 9, 11 – 23, doi: 10.1016/0011-7471(62)90243-7.en_US
dc.identifier.citedreferenceXu, Y., and W.‐X. Wang ( 2004 ), Silver uptake by a marine diatom and its transfer to the coastal copepod Acartia spinicauda, Environ. Toxicol. Chem., 23, 682 – 690, doi: 10.1897/1551-5028(2004)023<0682:SUBAMD>2.0.CO;2.en_US
dc.identifier.citedreferenceZhang, Y., H. Amakawa, and Y. Nozaki ( 2001 ), Oceanic profiles of dissolved silver: precise measurements in the basins of western North Pacific, Sea of Okhotsk, and the Japan Sea, Mar. Chem., 75, 151 – 163, doi: 10.1016/S0304-4203(01)00035-4.en_US
dc.identifier.citedreferenceZhang, Y., H. Obata, and Y. Nozaki ( 2004 ), Silver in the Pacific Ocean and the Bering Sea, Geochem. J., 38, 623 – 633.en_US
dc.identifier.citedreferenceZheng, Y., A. van Geen, R. F. Anderson, J. V. Gardner, and W. E. Dean ( 2000 ), Intensification of the northeast Pacific oxygen minimum zone during the Bölling‐Alleröd warm period, Paleoceanography, 15, 528 – 536, doi: 10.1029/1999PA000473.en_US
dc.identifier.citedreferenceZheng, Y., R. F. Anderson, A. van Geen, and M. Q. Fleischer ( 2002 ), Preservation of particulate non‐lithogenic uranium in marine sediments, Geochim. Cosmochim. Acta, 66, 3085 – 3092, doi: 10.1016/S0016-7037(01)00632-9.en_US
dc.identifier.citedreferenceChang, A. S., M. A. Bertram, T. Ivanachko, S. E. Calvert, A. Dallimore, and R. E. Thomson ( 2013 ), Annual record of particle fluxes, geochemistry and diatoms in Effingham Inlet, British Columbia, Canada, and the impact of the 1999 La Niña event, Mar. Geol., 337, 20 – 34, doi: 10.1016/j.margeo.2013.01.003.en_US
dc.identifier.citedreferenceClague, J. J., and T. S. James ( 2002 ), History and isostatic effects of the last ice sheet in southern British Columbia, Quat. Sci. Rev., 21, 71 – 87, doi: 10.1016/S0277-3791(01)00070-1.en_US
dc.identifier.citedreferenceClague, J. J., J. E. Armstrong, and W. H. Mathews ( 1980 ), Advance of the late Wisconsin Cordilleran ice‐sheet in southern British Columbia since 22,000 yr BP, Quat. Res., 13, 322 – 326, doi: 10.1016/0033-5894(80)90060-5.en_US
dc.identifier.citedreferenceAlgeo, T. J., and T. W. Lyons ( 2006 ), Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrogeographic conditions, Paleoceanography, 21, PA1016, doi: 10.1029/2004PA001112.en_US
dc.identifier.citedreferenceAllen, S. E., and B. M. Hickey ( 2010 ), Dynamics of advection‐driven upwelling over a shelf break submarine canyon, J. Geophys. Res., 115, C08018, doi: 10.1029/2009JC005731.en_US
dc.identifier.citedreferenceAlley, R. B., and P. U. Clark ( 1999 ), The deglaciation of the northern hemisphere, Annu. Rev. Earth Planet. Sci., 27, 149 – 182, doi: 10.1146/annurev.earth.27.1.149.en_US
dc.identifier.citedreferenceAltabet, M. A., and R. François ( 1994 ), Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization, Global Biogeochem. Cycles, 8, 103 – 116, doi: 10.1029/93GB03396.en_US
dc.identifier.citedreferenceAnbar, A. D., R. A. Creaser, D. A. Papanastassiou, and G. J. Wasserburg ( 1992 ), Rhenium in seawater: Confirmation of generally conservative behavior, Geochim. Cosmochim. Acta, 56, 4099 – 4103, doi: 10.1016/0016-7037(92)90021-A.en_US
dc.identifier.citedreferenceAndersen, B. C., and H. W. Borns Jr. ( 1997 ), The Ice Age World, Scandinavian University Press, Oslo, Norway.en_US
dc.identifier.citedreferenceAntoine, D., J. M. Andre, and A. Morel ( 1996 ), Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cycles, 10, 57 – 69, doi: 10.1029/95GB02832.en_US
dc.identifier.citedreferenceBeaufort, L., et al. ( 2002 ), Les rapports des campagnes à la mer. MD 126 MONA IMAGES VIII Cruise Report, Institute Polaire Fr. Paul‐Emile Victor, Plouzaneé, France. [Available at http://www.images-pages.org/cruises/images8/MONA_Cruise_Report.pdf.]en_US
dc.identifier.citedreferenceBishop, J. K. B. ( 1988 ), The barite‐opal‐organic carbon association in oceanic particulate matter, Nature, 332, 341 – 343, doi: 10.1038/332341a0.en_US
dc.identifier.citedreferenceBlanchet, C. L., N. Thouveny, L. Vidal, G. Leduc, K. Tachikawa, E. Bard, and L. Beaufort ( 2007 ), Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: A rock magnetic approach, Quat. Sci. Rev., 26, 3118 – 3133, doi: 10.1016/j.quascirev.2007.07.008.en_US
dc.identifier.citedreferenceBöning, P., H. ‐J. Brumsack, M. E. Böttcher, B. Schnetger, C. Kriete, J. Kallmeyer, and S. L. Borchers ( 2004 ), Geochemistry of Peruvian near‐surface sediments, Geochim. Cosmochim. Acta, 68, 4429 – 4451, doi: 10.1016/j.gca.2004.04.027.en_US
dc.identifier.citedreferenceBornhold, B. D., and C. J. Yorath ( 1984 ), Surficial geology of the continental shelf, northwestern Vancouver Island, Mar. Geol., 57, 89 – 112, doi: 10.1016/0025-3227(84)90196-8.en_US
dc.identifier.citedreferenceBrennecka, G. A., L. E. Wasylenki, J. R. Bargar, S. Weyer, and A. D. Anbar ( 2011 ), Uranium isotope fractionation during adsorption to Mn‐oxyhydroxides, Environ. Sci. Technol., 45, 1370 – 1375, doi: 10.1021/es103061v.en_US
dc.identifier.citedreferenceBroecker, W. S. ( 1997 ), Mountain glaciers: Recorders of atmospheric water vapor content?, Global Biogeochem. Cycles, 11, 589 – 598, doi: 10.1029/97GB02267.en_US
dc.identifier.citedreferenceBruland, K. W., G. A. Knauer, and J. H. Martin ( 1978 ), Cadmium in the northeast Pacific waters, Limnol. Oceanogr., 23, 618 – 625.en_US
dc.identifier.citedreferenceCalvert, S. E., and T. F. Pedersen ( 1996 ), Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales, Econ. Geol., 91, 36 – 4, doi: 10.2113/gsecongeo.91.1.36.en_US
dc.identifier.citedreferenceCalvert, S. E., and T. F. Pedersen ( 2007 ), Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application, in Paleoceanography of the Late Cenozoic, Part 1, Methods in Late Cenozoic Paleoceanography, edited by C. Hillaire‐Marcel and A. de Vernal, pp. 567 – 644, Elsevier, Amsterdam, doi: 10.1016/S1572-5480(07)01019-6.en_US
dc.identifier.citedreferenceCartapanis, O., K. Tachikawa, and E. Bard ( 2011 ), Northeastern Pacific oxygen minimum zone variability over the past 70 kyr: Impact of biological and oceanic ventilation, Paleoceanography, 26, PA4208, doi: 10.1029/2011PA002126.en_US
dc.identifier.citedreferenceChang, A. S., T. F. Pedersen, and I. L. Hendy ( 2008 ), Late Quaternary paleoproductivity history on the Vancouver Island Margin, western Canada: A multiproxy geochemical study, Can. J. Earth Sci., 45, 1283 – 1297, doi: 10.1139/E08-038.en_US
dc.identifier.citedreferenceCollier, R. W. ( 1985 ), Molybdenum in the northeast Pacific Ocean, Limnol. Oceanogr., 30, 1351 – 1354.en_US
dc.identifier.citedreferenceColodner, D., J. Sachs, G. Ravizza, K. Turekian, J. Edmond, and E. Boyle ( 1993 ), The geochemical cycle of rhenium: A reconnaissance, Earth Planet. Sci. Lett., 117, 205 – 221, doi: 10.1016/0012-821X(93)90127-U.en_US
dc.identifier.citedreferenceCosma, T., and I. L. Hendy ( 2008 ), Pleistocene glacimarine sedimentation on the continental slope off Vancouver Island, British Columbia, Mar. Geol., 255, 45 – 54, doi: 10.1016/j.margeo.2008.07.001.en_US
dc.identifier.citedreferenceCosma, T. N., I. L. Hendy, and A. S. Chang ( 2008 ), Chronological constraints on Cordilleran Ice Sheet glaciomarine sedimentation from core MD02‐2496 off Vancouver Island (western Canada), Quat. Sci. Rev., 27, 941 – 955, doi: 10.1016/j.quascirev.2008.01.013.en_US
dc.identifier.citedreferenceCrusius, J., S. Calvert, T. Pedersen, and D. Sage ( 1996 ), Rhenium and molybdenum in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition, Earth Planet. Sci. Lett., 145, 65 – 78, doi: 10.1016/S0012-821X(96)00204-X.en_US
dc.identifier.citedreferenceCrusius, J., T. F. Pedersen, S. Kienast, L. Keigwin, and L. Labeyrie ( 2004 ), Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling‐Allerød interval (14.7–12.9 ka), Geology, 32, 633 – 636, doi: 10.1130/G20508.1.en_US
dc.identifier.citedreferenceCullen, J. T., and R. M. Sherrell ( 2005 ), Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages, Limnol. Oceanogr., 50, 1193 – 1204.en_US
dc.identifier.citedreferenceDallimore, A., R. J. Enkin, R. Pienitz, J. R. Southon, J. Baker, C. A. Wright, T. F. Pedersen, S. E. Calvert, T. Ivanochko, and R. E. Thomson ( 2008 ), Postglacial evolution of a Pacific coastal fjord in British Columbia, Canada: Interactions of sea‐level change, crustal response, and environmental fluctuations—results from MONA core MD02‐2494, Can. J. Earth Sci., 45, 1345 – 1362, doi: 10.1139/E08-042.en_US
dc.identifier.citedreferenceDansgaard, W., et al. ( 1993 ), Evidence for general instability of past climate from a 250‐kyr ice‐core record, Nature, 364, 218 – 220, doi: 10.1038/364218a0.en_US
dc.identifier.citedreferenceDean, W. E., Y. Zheng, J. D. Ortiz, and A. van Geen ( 2006 ), Sediment Cd and Mo accumulation in the oxygen‐minimum zone off western Baja California linked to global climate over the past 52 kyr, Paleoceanography, 21, PA4209, doi: 10.1029/2005PA001239.en_US
dc.identifier.citedreferenceDelgadillo‐Hinojosa, F., J. V. Macías‐Zamora, J. A. Segovia‐Zavala, and S. Torres‐Valdés ( 2001 ), Cadmium enrichment in the Gulf of California, Mar. Chem., 75, 109 – 122, doi: 10.1016/S0304-4203(01)00028-7.en_US
dc.identifier.citedreferenceDyrssen, D., and K. Kremling ( 1990 ), Increasing hydrogen sulphide concentrations and trace metal behaviour in the anoxic Baltic waters, Mar. Chem., 30, 193 – 204, doi: 10.1016/0304-4203(90)90070-S.en_US
dc.identifier.citedreferenceFriedl, G., and T. F. Pedersen ( 2001 ), Silver as a new tracer for diatom production, EAWAG News, 52, 14 – 15.en_US
dc.identifier.citedreferenceGalbraith, E. D., M. Kienast, S. L. Jaccard, T. F. Pedersen, B. G. Brundle, and T. Kiefer ( 2008 ), Consistent relationship between global climate and surface nitrate utilization in western subarctic Pacific throughout the last 500 ky, Paleoceanography, 23, PA2212, doi: 10.1029/2008PA001518.en_US
dc.identifier.citedreferenceGaneshram, R. S., and T. F. Pedersen ( 1998 ), Glacial‐interglacial variability in upwelling and bioproductivity off NW Mexico: Implications for Quaternary paleoclimate, Paleoceanography, 13, 634 – 645, doi: 10.1029/98PA02508.en_US
dc.identifier.citedreferenceGaneshram, R. S., S. E. Calvert, T. F. Pedersen, and G. L. Cowie ( 1999 ), Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation, Geochim. Cosmochim. Acta, 63, 1723 – 1734, doi: 10.1016/S0016-7037(99)0073-3.en_US
dc.identifier.citedreferenceGaneshram, R. S., R. François, J. Commeau, and S. L. Brown‐Leger ( 2003 ), An experimental investigation of barite formation in seawater, Geochim. Cosmochim. Acta, 67, 2599 – 2605, doi: 10.1016/S0016-7037(03)00164-9.en_US
dc.identifier.citedreferenceGarcia, H. E., R. A. Locarnini, T. P. Boyer, and J. I. Antonov ( 2006 ), World Ocean Atlas 2005, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, in NOAA Atlas NESDIS, vol. 63, edited by S. Levitus, 342 pp. U.S. Government Printing Office, Washington, D. C.en_US
dc.identifier.citedreferenceGoldberg, E. D., and G. O. S. Arrhenius ( 1958 ), Chemistry of Pacific pelagic sediments, Geochim. Cosmochim. Acta, 13, 153 – 212, doi: 10.1016/0016-7037(58)90046-2.en_US
dc.identifier.citedreferenceHelz, G. R., and M. K. Dolor ( 2012 ), What regulates rhenium in euxinic basins?, Chem. Geol., 304–305, 131 – 141, doi: 10.1016/j.chemgeo.2012.02.011.en_US
dc.identifier.citedreferenceHelz, G. R., E. Bura‐Nakic, N. Mikac, and I. Ciglenecki ( 2011 ), New model for molybdenum behavior in euxinic waters, Chem. Geol., 284 ( 3–4 ), 323 – 332, doi: 10.1016/j.chemgeo.2011.03.012.en_US
dc.identifier.citedreferenceHendy, I. L. ( 2010 ), Diagenetic behavior of barite in a coastal upwelling setting, Paleoceanography, 25, PA4103, doi: 10.1029/2009PA001890.en_US
dc.identifier.citedreferenceHendy, I. L., and T. Cosma ( 2008 ), Vulnerability of the Cordilleran Ice Sheet to iceberg calving during late Quaternary rapid climate change events, Paleoceanography, 23, PA2101, doi: 10.1029/2008PA001606.en_US
dc.identifier.citedreferenceHendy, I. L., and T. F. Pedersen ( 2005 ), Is pore water oxygen content decoupled from productivity on the California Margin? Trace element results from Ocean Drilling Program Hole 1017E, San Lucia Slope, California, Paleoceanography, 20, PA4026, doi: 10.1029/2004PA001123.en_US
dc.identifier.citedreferenceHendy, I. L., and T. F. Pedersen ( 2006 ), Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation, Geophys. Res. Lett., 33, L20602, doi: 10.1029/2006GL025975.en_US
dc.identifier.citedreferenceHendy, I. L., T. F. Pedersen, J. P. Kennett, and R. Tada ( 2004 ), Intermittent existence of a southern Californian upwelling cell during submillennial climate change of the last 60 kyr, Paleoceanography, 19, PA3007, doi: 10.1029/2003PA000965.en_US
dc.identifier.citedreferenceHerguera, J. C., T. Herbert, M. Kashgarian, and C. Charles ( 2010 ), Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes, Quat. Sci. Rev., 29 ( 9–10 ), 1228 – 1245, doi: 10.1016/j.quascirev.2010.02.009.en_US
dc.identifier.citedreferenceHerzer, R. H., and B. D. Bornhold ( 1982 ), Glaciation and post‐glacial history of the continental shelf off southwestern Vancouver Island, British Columbia, Mar. Geol., 48, 285 – 319, doi: 10.1016/0025-3227(82)90101-3.en_US
dc.identifier.citedreferenceHickey, B. M. ( 1979 ), The California Current system—Hypotheses and facts, Prog. Oceanogr., 8, 191 – 279, doi: 10.1016/0079-6611(79)90002-8.en_US
dc.identifier.citedreferenceHostetler, S. W., P. U. Clark, P. J. Bartlein, A. C. Mix, and N. J. Pisias ( 1999 ), Atmospheric transmission of north Atlantic Heinrich events, J. Geophys. Res., 104 ( D4 ), 3947 – 3952, doi: 10.1029/1998JD200067.en_US
dc.identifier.citedreferenceHuyer, A., J. A. Barth, P. M. Kosro, R. K. Shearman, and R. L. Smith ( 1998 ), Upper‐ocean water mass characteristics of the California Current, summer 1993, Deep Sea Res., Part II, 45, 1411 – 1442, doi: 10.1016/S0967-0645(98)80002-7.en_US
dc.identifier.citedreferenceIvanochko, T. S., and T. F. Pedersen ( 2004 ), Determining the influences of late Quaternary ventilation and productivity variations on Santa Barbara Basin sedimentary oxygenations: A multi‐proxy approach, Quat. Sci. Rev., 23, 467 – 480, doi: 10.1016/j.quascirev.2003.06.006.en_US
dc.identifier.citedreferenceKienast, S. S., and J. L. McKay ( 2001 ), Sea surface temperatures in the subarctic northeast Pacific reflect millennial‐scale climate oscillations during the past 16 kyrs, Geophys. Res. Lett., 28, 1563 – 1566, doi: 10.1029/2000GL012543.en_US
dc.identifier.citedreferenceKienast, S. S., S. E. Calvert, and T. F. Pedersen ( 2002 ), Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography, Paleoceanography, 17 ( 4 ), 1055, doi: 10.1029/2001PA000650.en_US
dc.identifier.citedreferenceKlinkhammer, G. P., and M. R. Palmer ( 1991 ), Uranium in the oceans: Where it goes and why, Geochim. Cosmochim. Acta, 55, 1799 – 1806, doi: 10.1016/0016-7037(91)90024-Y.en_US
dc.identifier.citedreferenceKoide, M., V. F. Hodge, J. S. Yang, M. Stallard, E. G. Goldberg, J. Calhoun, and K. K. Bertine ( 1986 ), Some comparative marine chemistries of rhenium, gold, silver and molybdenum, Appl. Geochem., 1, 705 – 714.en_US
dc.identifier.citedreferenceKramer, D., J. T. Cullen, J. R. Christian, W. K. Johnson, and T. F. Pedersen ( 2011 ), Silver in the subarctic northeast Pacific Ocean: Explaining the basin scale distribution of silver, Mar. Chem., 123, 133 – 142, doi: 10.1016/j.marchem.2010.11.002.en_US
dc.identifier.citedreferenceLane, T. W., and F. M. M. Morel ( 2000 ), A biological function for cadmium in marine diatoms, Proc. Natl. Acad. Sci. U.S.A., 97, 4627 – 4631, doi: 10.1073/pnas.090091397.en_US
dc.identifier.citedreferenceLee, J. G., S. B. Roberts, and F. M. M. Morel ( 1995 ), Cadmium: A nutrient for the marine diatom Thalassiosira weissflogii, Limnol. Oceanogr., 40, 1056 – 1063.en_US
dc.identifier.citedreferenceLi, Y. ‐H., and S. Gregory ( 1974 ), Diffusion of ions in sea water and in deep‐sea sediments, Geochim. Cosmochim. Acta, 38, 703 – 714, doi: 10.1016/0016-7037(74)90145-8.en_US
dc.identifier.citedreferenceLisiecki, L. E., and M. E. Raymo ( 2005 ), A Pliocene‐Pleistocene stack of 57 globally distributed benthic d 18 O records, Paleoceanography, 20, PA1003, doi: 10.1029/2004PA001071.en_US
dc.identifier.citedreferenceManheim, F. T. ( 1970 ), The diffusion of ions in unconsolidated sediments, Earth Planet. Sci. Lett., 9, 307 – 309, doi: 10.1016/0012-821X(70)90123-8.en_US
dc.identifier.citedreferenceMasuzawa, T., S. Noriki, T. Kurosaki, S. Tsunogai, and M. Koyama ( 1989 ), Compositional change of settling particles with water depth in the Japan Sea, Mar. Chem., 27, 61 – 78, doi: 10.1016/0304-4203(89)90028-5.en_US
dc.identifier.citedreferenceMatsumoto, K., T. Oba, J. Lynch‐Stieglitz, and H. Yamamoto ( 2002 ), Interior hydrography and circulation of the glacial Pacific Ocean, Quat. Sci. Rev., 21 ( 14–15 ), 1693 – 1704, doi: 10.1016/S0277-3791(01)00142-1.en_US
dc.identifier.citedreferenceMcKay, J. L. ( 2003 ), Palaeoceanography of the northeastern Pacific Ocean off Vancouver Island, Canada, PhD dissertation, University of British Columbia, Vancouver, B. C.en_US
dc.identifier.citedreferenceMcKay, J. L., and T. F. Pedersen ( 2008 ), The accumulation of silver in marine sediment: A link to biogenic Ba and marine productivity, Global Biogeochem. Cycles, 22, GB4010, doi: 10.1029/2007GB003136.en_US
dc.identifier.citedreferenceMcKay, J. L., T. F. Pedersen, and S. S. Kienast ( 2004 ), Organic carbon accumulation over the last 16 kyr off Vancouver Island, Canada: Evidence for increased marine productivity during the deglacial, Quat. Sci. Rev., 23, 261 – 281, doi: 10.1016/j.quascirev.2003.07.004.en_US
dc.identifier.citedreferenceMcKay, J. L., T. F. Pedersen, and J. Southon ( 2005 ), Intensification of the oxygen minimum zone in the Northeast Pacific off Vancouver Island during the last deglaciation: Ventilation and/or export production?, Paleoceanography, 20, PA4002, doi: 10.1029/2003PA000979.en_US
dc.identifier.citedreferenceMcKay, J. L., T. F. Pedersen, and A. Mucci ( 2007 ), Sedimentary redox conditions in continental margin sediments (N.E. Pacific) — Influence on the accumulation of redox‐sensitive trace metals, Chem. Geol., 238, 180 – 196, doi: 10.1016/j.chemgeo.2006.11.008.en_US
dc.identifier.citedreferenceMcManus, J., W. M. Berelson, G. P. Klinkhammer, T. E. Kilgore, and D. E. Hammond ( 1994 ), Remobilization of barium in continental margin sediments, Geochim. Cosmochim. Acta, 58, 4899 – 4907, doi: 10.1016/0016-7037(94)90220-8.en_US
dc.identifier.citedreferenceMorford, J. L., and S. Emerson ( 1999 ), The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 63, 1735 – 1750, doi: 10.1016/S0016-7037(99)00126-X.en_US
dc.identifier.citedreferenceMorford, J. L., A. D. Russell, and S. Emerson ( 2001 ), Trace metal evidence for changes in the redox environment associate with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC, Mar. Geol., 174, 355 – 369, doi: 10.1016/S0025‐3227(00)00160‐2.en_US
dc.identifier.citedreferenceMorford, J. L., S. R. Emerson, E. J. Breckel, and S. H. Kim ( 2005 ), Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin, Geochim. Cosmochim. Acta, 69, 5021 – 5032, doi: 10.1016/j.gca.2005.05.015.en_US
dc.identifier.citedreferenceMortlock, R. A., and P. N. Froelich ( 1989 ), A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep Sea Res. Part A, 36, 1415 – 1426, doi: 10.1016/0198-0149(89)90092-7.en_US
dc.identifier.citedreferenceNameroff, T. J., L. S. Balistrieri, and J. W. Murray ( 2002 ), Suboxic trace metal geochemistry in the Eastern Tropical North Pacific, Geochim. Cosmochim. Acta, 66 ( 7 ), 1139 – 1158, doi: 10.1016/S0016-7037(01)00843-2.en_US
dc.identifier.citedreferenceNameroff, T. J., S. E. Calvert, and J. W. Murray ( 2004 ), Glacial‐interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox‐sensitive trace metals, Paleoceanography, 19, PA1010, doi: 10.1029/2003PA000912.en_US
dc.identifier.citedreferencePaytan, A., and E. M. Griffith ( 2007 ), Marine barite: Recorder of variations in ocean export productivity, Deep Sea Res., Part II, 54, 687 – 705, doi: 10.1016/j.dsr.2007.01.007.en_US
dc.identifier.citedreferencePeña, M. A., K. L. Denman, S. E. Calvert, R. E. Thomson, and J. R. Forbes ( 1999 ), The seasonal cycle in sinking particle fluxes off Vancouver Island, British Columbia, Deep Sea Res., Part II, 46, 2969 – 2992, doi: 10.1016/S0967-0645(99)00090-9.en_US
dc.identifier.citedreferencePierce, S. D., R. L. Smith, P. M. Kosro, A. F. Barth, and C. D. Wilson ( 2000 ), Continuity of the poleward undercurrent along the eastern boundary of the mid‐latitude North Pacific, Deep Sea Res., Part II, 47, 811 – 829, doi: 10.1016/S0967-0645(99)00128-9.en_US
dc.identifier.citedreferencePrahl, F. G., J. R. Ertel, M. A. Goni, M. A. Sparrow, and B. Eversmeyer ( 1994 ), Terrestrial organic carbon contributions to sediments on the Washington margin, Geochim. Cosmochim. Acta, 58, 3035 – 3048, doi: 10.1016/0016-7037(94)09177-5.en_US
dc.identifier.citedreferenceRagueneau, O., et al. ( 2000 ), A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy, Global Planet. Change, 26, 317 – 365, doi: 10.1016/S0921-8181(00)00052-7.en_US
dc.identifier.citedreferenceReed, R. K., and D. Halpern ( 1976 ), Observations of the California Undercurrent off Washington and Vancouver Island, Limnol. Oceanogr., 21, 389 – 398, doi: 10.4319/lo.1976.21.3.0389.en_US
dc.identifier.citedreferenceReinfelder, J. R., and N. S. Fisher ( 1991 ), The assimilation of elements ingested by marine copepods, Science, 251, 794 – 796, doi: 10.1126/science.251.4995.794.en_US
dc.identifier.citedreferenceRosenthal, Y., P. Lam, E. A. Boyle, and J. Thomson ( 1995 ), Authigenic cadmium enrichments in suboxic sediments: Precipitation and postdepositional mobility, Earth Planet. Sci. Lett., 132, 99 – 111, doi: 10.1016/0012-821X(95)00056-I.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.