Show simple item record

Toward a reduction of mesh imprinting

dc.contributor.authorLung, T. B.en_US
dc.contributor.authorRoe, P. L.en_US
dc.date.accessioned2014-10-07T16:09:31Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-10-07T16:09:31Z
dc.date.issued2014-11-10en_US
dc.identifier.citationLung, T. B.; Roe, P. L. (2014). "Toward a reduction of mesh imprinting." International Journal for Numerical Methods in Fluids 76(7): 450-470.en_US
dc.identifier.issn0271-2091en_US
dc.identifier.issn1097-0363en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108641
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFlux‐Corrected Transport, Flux Limitingen_US
dc.subject.otherAcousticen_US
dc.subject.otherLagrangianen_US
dc.subject.otherMultidimensionalen_US
dc.subject.otherLax–Wendroffen_US
dc.subject.otherVorticityen_US
dc.titleToward a reduction of mesh imprintingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108641/1/fld3941.pdf
dc.identifier.doi10.1002/fld.3941en_US
dc.identifier.sourceInternational Journal for Numerical Methods in Fluidsen_US
dc.identifier.citedreferenceLukáčová‐Medvid'ová M, Morton KW, Warnecke G. Evolution Galerkin methods for hyperbolic systems in two space dimensions. Mathematics of Computation 2000; 69 ( 232 ): 1355 – 1384.en_US
dc.identifier.citedreferenceMorton KW, Roe PL. Vorticity‐preserving Lax‐Wendroff‐type schemes for the system wave equation. SIAM Journal on Scientific Computing 2001; 23 ( 1 ): 170 – 192.en_US
dc.identifier.citedreferenceJeltsch R, Torrilhon M. On curl‐preserving finite‐volume discretizations for the shallow‐water equations. BIT Numerical Mathematics 2006; 46: S35 – S53.en_US
dc.identifier.citedreferenceMishra S, Tadmor E. Vorticity‐preserving schemes using potential‐based fluxes for the system wave equation. Proceedings of Symposia in Applied Mathematics 2009; 67 ( 2 ): 795 – 804.en_US
dc.identifier.citedreferenceBauer AL, Loubère R, Wendroff B. On stability of staggered schemes. SIAM Journal on Numerical Analysis 2008; 46:( 2 ): 996 – 1011.en_US
dc.identifier.citedreferenceWilson JC. Stability of Richtmyer type difference schemes in any finite number of space variables and their comparison with multistep Strang schemes. IMA Journal of Applied Mathematics 1972; 10 ( 2 ): 238 – 257.en_US
dc.identifier.citedreferenceTurkel E. Phase error and stability of second order methods for hyperbolic problems I. Journal of Computational Physics 1974; 15: 226 – 250.en_US
dc.identifier.citedreferenceDukowicz JK, Meltz BJA. Vorticity errors in multidimensional Lagrangian codes. Journal of Computational Physics 1992; 99: 115 – 134.en_US
dc.identifier.citedreferenceToro EF. In Riemann Solvers and Numerical Methods for Fluid Dynamics: A practical Introduction. Springer: Berlin, 2009; 561 – 563.en_US
dc.identifier.citedreferenceLax P, Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics 1960; 13: 217 – 237.en_US
dc.identifier.citedreferenceLax P, Wendroff B. Difference schemes for hyperbolic equations with high order of accuracy. Commmunications on Pure and Applied Mathematics 1964; 17: 381 – 398.en_US
dc.identifier.citedreferenceGottlieb D, Turkel E. Phase error and stability of second order methods for hyperbolic problems II. Journal of Computational Physics 1974; 15: 251 – 265.en_US
dc.identifier.citedreferenceVichnevetsky R, Bowles JB. In Fourier Analysis of Numerical Approximations of Hyperbolic Equations. SIAM: Philadelphia, 1982; 115 – 129.en_US
dc.identifier.citedreferenceKumar A. Isotropic finite differences. Journal of Computational Physics 2004; 201 ( 1 ): 109 – 118.en_US
dc.identifier.citedreferenceZalesak ST. The design of flux‐corrected transport (FCT) algorithms for structured grids. In Flux‐Corrected Transport. Springer: Berlin, 2005; 29 – 78.en_US
dc.identifier.citedreferenceFriedrichs KO. Symmetric hyperbolic linear differential equations. Communications on Pure and Applied Mathematics 1954; 7: 345 – 392.en_US
dc.identifier.citedreferenceBoris JP, Book DL. Flux‐corrected transport I: SHASTA, a fluid transport algorithm that works. Journal of Computational Physics 1973; 11: 38 – 69.en_US
dc.identifier.citedreferenceLiu X‐D, Lax P. Positive schemes for solving multi‐dimensional systems of hyperbolic conservation laws. CFD Journal 1996; 5 ( 2 ): 133 – 156.en_US
dc.identifier.citedreferencevan Leer B. Toward the ultimate conservative difference scheme I. The quest of monotonicity. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Springer: Berlin Heidelberg, 1973; 163 – 168.en_US
dc.identifier.citedreferenceBoris JP, Book DL. Flux‐corrected transport III: Minimal‐error FCT algorithms. Journal of Computational Physics 1976; 20: 397 – 431.en_US
dc.identifier.citedreferenceBoris JP, Book DL, Hain K. Flux‐corrected transport II: Generalizations of the method. Journal of Computational Physics 1975; 18: 248 – 283.en_US
dc.identifier.citedreferenceZalesak ST. Fully multidimensional Flux‐corrected Transport algorithms for fluids. Journal of Computational Physics 1979; 31: 335 – 362.en_US
dc.identifier.citedreferenceStrang G. Accurate partial difference methods II. Non‐linear problems. Numerische Mathematik 1964; 6: 37 – 46.en_US
dc.identifier.citedreferenceWilkins ML. Calculation of elastic‐plastic flow. In Methods in Computational Physics, Vol. 3, Academic Press: New York, 1964; 211 – 263.en_US
dc.identifier.citedreferenceCaramana EJ, Burton DE, Shashkov MJ, Whalen PP. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. Journal of Computational Physics 1998; 146: 227 – 262.en_US
dc.identifier.citedreferenceDesprés B, Mazeran C. Lagrangian gas dynamics in two dimensions and Lagrangian systems. Archive for Rational Mechanics and Analysis 2005; 178: 327 – 372.en_US
dc.identifier.citedreferenceMaire PH, Abgrall R, Breil J, Ovadia J. A cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems. SIAM Journal on Scientific Computing 2007; 29 ( 4 ): 1781 – 1824.en_US
dc.identifier.citedreferenceMaire PH, Breil J. A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems. International Journal for Numerical Methods in Fluids 2008; 56: 1417 – 1423.en_US
dc.identifier.citedreferenceCarré G, Del Pino S, Després B, Labourasse E. A cell‐centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimensions. Journal of Computational Physics 2009; 228: 5160 – 5183.en_US
dc.identifier.citedreferenceBarlow AJ, Roe PL. A cell centred Lagrangian Godunov scheme for shock hydrodynamics. Computers and Fluids 2011; 46 ( 1 ): 133 – 136.en_US
dc.identifier.citedreferenceBurton DE, Carney TC, Morgan NR, Sambasivan SK, Shashkov MJ. A cell‐centered Lagrangian Godunov‐like method for solid dynamics. Computers and Fluids 2013; 83: 33 – 47.en_US
dc.identifier.citedreferenceDukowicz JK, Cline MC, Addessio FS. A general topology Godunov method. Journal of Computational Physics 1989; 82: 29 – 63.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.