Show simple item record

Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets.

dc.contributor.authorLai, Wei-Jenen_US
dc.date.accessioned2014-10-13T18:19:52Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-10-13T18:19:52Z
dc.date.issued2014en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108898
dc.description.abstractThe mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions. Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to the analytical solutions as the kink length decreases to a small value. Finally, the analytical stress intensity factor solutions for welds in lap-shear specimens of two dissimilar sheets were presented graphically and validated by finite element analyses for convenient fracture and fatigue analyses. The transition thickness ratios and weld widths for different combinations of dissimilar materials were also presented. Experimental results were presented to demonstrate the usefulness of the solutions for predicting failure locations.en_US
dc.language.isoen_USen_US
dc.subjectLithium-ion Batteryen_US
dc.subjectMagnesiumen_US
dc.subjectUltrasonic Spot Weldingen_US
dc.subjectWeld-bondingen_US
dc.subjectStress Intensity Factoren_US
dc.subjectFatigue Life Estimationen_US
dc.titleMechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMaterials Science and Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberPan, Jwoen_US
dc.contributor.committeememberHosford Jr., William F.en_US
dc.contributor.committeememberMcCormick, Jason Paulen_US
dc.contributor.committeememberRobertson, Richard E.en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108898/1/weijen_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.