Show simple item record

Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long‐distance neuronal integration

dc.contributor.authorSkaggs, Kaiaen_US
dc.contributor.authorGoldman, Danielen_US
dc.contributor.authorParent, Jack M.en_US
dc.date.accessioned2014-11-04T16:35:28Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-11-04T16:35:28Z
dc.date.issued2014-12en_US
dc.identifier.citationSkaggs, Kaia; Goldman, Daniel; Parent, Jack M. (2014). "Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long‐distance neuronal integration." Glia 62(12): 2061-2079.en_US
dc.identifier.issn0894-1491en_US
dc.identifier.issn1098-1136en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109297
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNeural Repairen_US
dc.subject.otherRadial Gliaen_US
dc.subject.otherBrain Regenerationen_US
dc.subject.otherNeural Stem Cellsen_US
dc.titleExcitotoxic brain injury in adult zebrafish stimulates neurogenesis and long‐distance neuronal integrationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109297/1/glia22726.pdf
dc.identifier.doi10.1002/glia.22726en_US
dc.identifier.sourceGliaen_US
dc.identifier.citedreferenceShin J, Park H, Topczewska J, Mawdsley D, Appel B. 2003. Neural cell fate analysis in zebrafish using olig2 BAC transgenics. Meth Cell Sci 25: 7 – 14.en_US
dc.identifier.citedreferenceSofroniew MV. 2005. Reactive astrocytes in neural repair and protection. Neuroscientist 11: 400 – 407.en_US
dc.identifier.citedreferenceSofroniew MV. 2009. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32: 638 – 647.en_US
dc.identifier.citedreferenceStone T, Forrest C, Stoy N, Darlington L. 2012. Involvement of kynurenines in Huntington's disease and stroke‐induced brain damage. J Neural Transm 119: 261 – 274.en_US
dc.identifier.citedreferenceTattersfield AS, Croon RJ, Liu YW, Kells AP, Faull RLM, Connor B. 2004. Neurogenesis in the striatum of the quinolinic acid lesion model of Huntington's disease. Neuroscience 127: 319 – 332.en_US
dc.identifier.citedreferenceThored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O. 2006. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24: 739 – 747.en_US
dc.identifier.citedreferenceThored P, Heldmann U, Gomes‐Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen S‐EW, Ekdahl CT, Kokaia Z, Lindvall O. 2009. Long‐term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57: 835 – 849.en_US
dc.identifier.citedreferenceUngerstedt U. 1971. Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta physiol Scand Suppl 367: 49 – 68.en_US
dc.identifier.citedreferenceVeldman MB, Bemben MA, Goldman D. 2010. Tuba1a gene expression is regulated by KLF6/7 and is necessary for CNS development and regeneration in zebrafish. Mol Cell Neurosci 43: 370 – 383.en_US
dc.identifier.citedreferenceVeldman MB, Bemben MA, Thompson RC, Goldman D. 2007. Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration. Dev Biol 312: 596 – 612.en_US
dc.identifier.citedreferenceWan J, Ramachandran R, Goldman D. 2012. HB‐EGF Is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev Cell 22: 334 – 347.en_US
dc.identifier.citedreferenceWang L, Chopp M, Zhang RL, Zhang L, LeTourneau Y, Feng YF, Jiang A, Morris DC, Zhang ZG. 2009. The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158: 1356 – 1363.en_US
dc.identifier.citedreferenceYamashita T, Ninomiya M, Hernandez Acosta P, Garcia‐Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K. 2006. Subventricular zone‐derived neuroblasts migrate and differentiate into mature neurons in the post‐stroke adult striatum. J Neurosci 26: 6627 – 6636.en_US
dc.identifier.citedreferenceYiu G, He Z. 2006. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7: 617 – 627.en_US
dc.identifier.citedreferenceYurco P, Cameron DA. 2005. Responses of Müller glia to retinal injury in adult zebrafish. Vision Res 45: 991 – 1002.en_US
dc.identifier.citedreferenceZhang C, Gao J, Zhang H, Sun L, Peng G. 2012. Robo2–Slit and Dcc–Netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci 32: 12589 – 12602.en_US
dc.identifier.citedreferenceZhang RL, Chopp M, Roberts C, Jia L, Wei M, Lu M, Wang X, Pourabdollah S, Zhang ZG. 2011. Ascl1 lineage cells contribute to ischemia‐induced neurogenesis and oligodendrogenesis. J Cereb Blood Flow Metab 31: 614 – 625.en_US
dc.identifier.citedreferenceZhang RL, Zhang ZG, Zhang L, Chopp M. 2001. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105: 33 – 41.en_US
dc.identifier.citedreferenceZupanc GKH. 2008. Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol 102: 357 – 373.en_US
dc.identifier.citedreferenceZupanc GKH, Hinsch K, Gage FH. 2005. Proliferation, migration, neuronal differentiation, and long‐term survival of new cells in the adult zebrafish brain. J Comparative Neurol 488: 290 – 319.en_US
dc.identifier.citedreferenceZupanc GKH, Ott R. 1999. Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells produced. Exp Neurol 160: 78 – 87.en_US
dc.identifier.citedreferenceZupanc MM, Zupanc GKH. 2006. Upregulation of calbindin‐D28k expression during regeneration in the adult fish cerebellum. Brain Res 1095: 26 – 34.en_US
dc.identifier.citedreferenceZwilling D, Huang S‐Y, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu H‐Q, Lee J, Truong J, Andrews‐Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce‐Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ. 2011. Kynurenine 3‐monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145: 863 – 874.en_US
dc.identifier.citedreferenceAdolf B, Chapouton P, Lam CS, Topp S, Tannhauser B, Strähle U, Götz M, Bally‐Cuif L. 2006. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 295: 278 – 293.en_US
dc.identifier.citedreferenceArvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8: 963 – 970.en_US
dc.identifier.citedreferenceAyari B, El Hachimi KH, Yanicostas C, Landoulsi A, Soussi‐Yanicostas N. 2010. Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon. J Neurotr 27: 959 – 972.en_US
dc.identifier.citedreferenceBaumgart EV, Barbosa JS, Bally‐Cuif L, Götz M, Ninkovic J. 2011. Stab wound injury of the zebrafish telencephalon: A model for comparative analysis of reactive gliosis. Glia: 343 – 357.en_US
dc.identifier.citedreferenceBeal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168 – 171.en_US
dc.identifier.citedreferenceBecker CG, Becker T. 2007. Growth and pathfinding of regenerating axons in the optic projection of adult fish. J Neurosci Res 85: 2793 – 2799.en_US
dc.identifier.citedreferenceBecker CG, Becker T. 2008. Adult zebrafish as a model for successful central nervous system regeneration. Restorat Neurol Neurosci 26: 71 – 80.en_US
dc.identifier.citedreferenceBecker T, Becker CG. 2001. Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Compar Neurol 433: 131 – 147.en_US
dc.identifier.citedreferenceBecker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M. 1997. Axonal regrowth after spinal cord transection in adult zebrafish. The J Compar Neurol 377: 577 – 595.en_US
dc.identifier.citedreferenceBengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O. 1997. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94: 10432 – 10437.en_US
dc.identifier.citedreferenceBenjamins JA, Nedelkoska L, Bealmear B, Lisak RP. 2013. ACTH protects mature oligodendroglia from excitotoxic and inflammation‐related damage in vitro. Glia 61: 1206 – 1217.en_US
dc.identifier.citedreferenceBernardos RL, Barthel LK, Meyers JR, Raymond PA. 2007. Late‐stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27: 7028 – 7040.en_US
dc.identifier.citedreferenceBertrand N, Castro DS, Guillemot F. 2002. Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3: 517 – 530.en_US
dc.identifier.citedreferenceBonde S, Ekdahl CT, Lindvall O. 2006. Long‐term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation. Eur J Neurosci 23: 965 – 974.en_US
dc.identifier.citedreferenceBoniface EJ, Lu J, Victoroff T, Zhu M, Chen W. 2009. FlEx‐based transgenic reporter lines for visualization of Cre and Flp activity in live zebrafish. Genesis 47: 484 – 491.en_US
dc.identifier.citedreferenceBovolenta R, Zucchini S, Paradiso B, Rodi D, Merigo F, Navarro Mora G, Osculati F, Berto E, Marconi P, Marzola A, Fabene PF, Simonato M. 2010. Hippocampal FGF‐2 and BDNF overexpression attenuates epileptogenesis‐associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation 7: 81 – 86..en_US
dc.identifier.citedreferenceBuffo A, Vosko MR, Ertürk D, Hamann GF, Jucker M, Rowitch D, Götz M. 2005. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc Natl Acad Sci USA 102: 18183 – 18188.en_US
dc.identifier.citedreferenceCameron HA, McEwen BS, Gould E. 1995. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15: 4687 – 4692.en_US
dc.identifier.citedreferenceCammer W. 2001. Oligodendrocyte killing by quinolinic acid in vitro. Brain Res 896: 157 – 160.en_US
dc.identifier.citedreferenceCastro A, Becerra M, Manso MJ, Anadón R. 2006. Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter‐synthesizing enzymes. I. Olfactory organ and forebrain. J Comparative Neurol 494: 435 – 459.en_US
dc.identifier.citedreferenceChapouton P, Skupien P, Hesl B, Coolen M, Moore JC, Madelaine R, Kremmer E, Faus‐Kessler T, Blader P, Lawson ND, Bally‐Cuif L. 2010. Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci 30: 7961 – 7974.en_US
dc.identifier.citedreferenceChapouton P, Webb KJ, Stigloher C, Alunni A, Adolf B, Hesl B, Topp S, Kremmer E, Bally‐Cuif L. 2011. Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. J Comparative Neurol 519: 1748 – 1769.en_US
dc.identifier.citedreferenceChen J, Magavi SSP, Macklis JD. 2004. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 101: 16357 – 16362.en_US
dc.identifier.citedreferenceChristie K, Turnley A. 2013. Regulation of endogenous neural stem/progenitor cells for neural repair—Factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Frontiers Cellular Neurosci 6: 70.en_US
dc.identifier.citedreferenceClint SC, Zupanc GKH. 2001. Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: Guidance of migrating young cells by radial glia. Dev Brain Res 130: 15 – 23.en_US
dc.identifier.citedreferenceCollin T, Arvidsson A, Kokaia Z, Lindvall O. 2005. Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury. Exp Neurol 195: 71 – 80.en_US
dc.identifier.citedreferenceCorrêa SAL, Grant K, Hoffmann A. 1998. Afferent and efferent connections of the dorsocentral telencephalon in an electrosensory teleost, Gymnotus carapo. Brain Behav Evol 52: 81 – 98.en_US
dc.identifier.citedreferenceDarlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. 2007. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 26: 2211 – 2221.en_US
dc.identifier.citedreferenceDeisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC. 2004. Excitation‐neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42: 535 – 552.en_US
dc.identifier.citedreferenceDi Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, Mirone P, Masotti G, Moroni F, Tarantini F. 2005. Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)−1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol 25: 981 – 993.en_US
dc.identifier.citedreferenceDiotel N, Vaillant C, Gabbero C, Mironov S, Fostier A, Gueguen M‐M, Anglade I, Kah O, Pellegrini E. 2013. Effects of estradiol in adult neurogenesis and brain repair in zebrafish. Horm Behav 63: 193 – 207.en_US
dc.identifier.citedreferenceEkdahl CT, Kokaia Z, Lindvall O. 2009. Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience 158: 1021 – 1029.en_US
dc.identifier.citedreferenceFausett BV, Goldman D. 2006. A role for α1 tubulin‐expressing Müller glia in regeneration of the injured zebrafish retina. J Neurosci 26: 6303 – 6313.en_US
dc.identifier.citedreferenceFausett BV, Gumerson JD, Goldman D. 2008. The proneural basic helix‐loop‐helix gene Ascl1a is required for retina regeneration. J Neurosci 28: 1109 – 1117.en_US
dc.identifier.citedreferenceFerrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF. 1993. Excitotoxin lesions in primates as a model for Huntington's Disease: Histopathologic and neurochemical characterization. Exp Neurol 119: 46 – 71.en_US
dc.identifier.citedreferenceFigueiredo C, Pais TF, Gomes JR, Chatterjee S. 2008. Neuron‐microglia crosstalk up‐regulates neuronal FGF‐2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 107: 73 – 85.en_US
dc.identifier.citedreferenceFitch MT, Silver J. 2008. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209: 294 – 301.en_US
dc.identifier.citedreferenceGanz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. 2012. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Compar Neurol 520: 633 – 655.en_US
dc.identifier.citedreferenceGanz J, Kaslin J, Hochmann S, Freudenreich D, Brand M. 2010. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58: 1345 – 1363.en_US
dc.identifier.citedreferenceGivogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi AL, de Vellis J, Bongarzone ER. 2006. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28: 81 – 91.en_US
dc.identifier.citedreferenceGordon RJ, McGregor AL, Connor B. 2009. Chemokines direct neural progenitor cell migration following striatal cell loss. Mol Cell Neurosci 41: 219 – 232.en_US
dc.identifier.citedreferenceGordon RJ, Tattersfield AS, Vazey EM, Kells AP, McGregor AL, Hughes SM, Connor B. 2007. Temporal profile of subventricular zone progenitor cell migration following quinolinic acid–induced striatal cell loss. Neuroscience 146: 1704 – 1718.en_US
dc.identifier.citedreferenceGrandel H, Kaslin J, Ganz J, Wenzel I, Brand M. 2006. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev Biol 295: 263 – 277.en_US
dc.identifier.citedreferenceGuillemin GJ. 2012. Quinolinic acid, the inescapable neurotoxin. FEBS J 279: 1356 – 1365.en_US
dc.identifier.citedreferenceHebb MO, Robertson HA. 1999. Synergistic influences of the striatum and the globus pallidus on postural and locomotor control. Neuroscience 90: 413 – 421.en_US
dc.identifier.citedreferenceHoehn BD, Palmer TD, Steinberg GK. 2005. Neurogenesis in rats after focal cerebral ischemia is wnhanced by indomethacin. Stroke 36: 2718 – 2724.en_US
dc.identifier.citedreferenceHui SP, Dutta A, Ghosh S. 2010. Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn 239: 2962 – 2979.en_US
dc.identifier.citedreferenceJin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA. 2001. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98: 4710 – 4715.en_US
dc.identifier.citedreferenceJin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA. 2003. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24: 171 – 189.en_US
dc.identifier.citedreferenceKaradottir R, Cavelier P, Bergersen LH, Attwell D. 2005. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438: 1162 – 1166.en_US
dc.identifier.citedreferenceKernie SG, Parent JM. 2010. Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37: 267 – 274.en_US
dc.identifier.citedreferenceKim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. 2011. Ascl1 (Mash1) defines cells with long‐term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE 6: e18472.en_US
dc.identifier.citedreferenceKishimoto N, Shimizu K, Sawamoto K. 2012. Neuronal regeneration in a zebrafish model of adult brain injury. Dis Models Mech 5: 200 – 209.en_US
dc.identifier.citedreferenceKizil C, Dudczig S, Kyritsis N, Machate A, Blaesche J, Kroehne V, Brand M. 2012a. The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Dev 7: 27.en_US
dc.identifier.citedreferenceKizil C, Kyritsis N, Dudczig S, Kroehne V, Freudenreich D, Kaslin J, Brand M. 2012b. Regenerative neurogenesis from neural progenitor cells requires injury‐induced expression of Gata3. Dev Cell 23: 1230 – 1237.en_US
dc.identifier.citedreferenceKroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. 2011. Regeneration of the adult zebrafish brain from neurogenic radial glia‐type progenitors. Development 138: 4831 – 4841.en_US
dc.identifier.citedreferenceKyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M. 2012. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338: 1353 – 1356.en_US
dc.identifier.citedreferenceLapin IP. 1978. Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice. J Neural Transm 42: 37 – 43.en_US
dc.identifier.citedreferenceLuk KC, Kennedy TE, Sadikot AF. 2003. Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor‐mediated mechanism. J Neurosci 23: 2239 – 2250.en_US
dc.identifier.citedreferenceMagavi SS, Leavitt BR, Macklis JD. 2000. Induction of neurogenesis in the neocortex of adult mice. Nature 405: 951 – 955.en_US
dc.identifier.citedreferenceMärz M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, Lam CS, Kah O, Bally‐Cuif L, Strähle U. 2010. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 58: 870 – 888.en_US
dc.identifier.citedreferenceMärz M, Schmidt R, Rastegar S, Strähle U. 2011. Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240: 2221 – 2231.en_US
dc.identifier.citedreferenceMiranda AF, Sutton MA, Beninger RJ, Jhamandas K, Boegman RJ. 1999. Quinolinic acid lesion of the nigrostriatal pathway: Effect on turning behaviour and protection by elevation of endogenous kynurenic acid in rattus norvegicus. Neurosci Lett 262: 81 – 84.en_US
dc.identifier.citedreferenceOhab JJ, Fleming S, Blesch A, Carmichael ST. 2006. A neurovascular niche for neurogenesis after stroke. J Neurosci 26: 13007 – 13016.en_US
dc.identifier.citedreferenceOrlando LR, Alsdorf SA, Penney Jr JB, Young AB. 2001. The role of group I and group II metabotropic glutamate receptors in modulation of striatal NMDA and quinolinic acid toxicity. Exp Neurol 167: 196 – 204.en_US
dc.identifier.citedreferenceParent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. 2002. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52: 802 – 813.en_US
dc.identifier.citedreferencePellegrini E, Mouriec K, Anglade I, Menuet A, Le Page Y, Gueguen M‐M, Marmignon M‐H, Brion F, Pakdel F, Kah O. 2007. Identification of aromatase‐positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comparative Neurol 501: 150 – 167.en_US
dc.identifier.citedreferencePlane JM, Liu R, Wang T‐W, Silverstein FS, Parent JM. 2004. Neonatal hypoxic–ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 16: 585 – 595.en_US
dc.identifier.citedreferenceRamachandran R, Reifler A, Parent JM, Goldman D. 2010. Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration. J Comparative Neurol 518: 4196 – 4212.en_US
dc.identifier.citedreferenceRamachandran R, Zhao X‐F, Goldman D. 2011. Ascl1a/Dkk/beta‐catenin signaling pathway is necessary and glycogen synthase kinase‐3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci USA 108: 15858 – 15863.en_US
dc.identifier.citedreferenceRasmussen S, Imitola J, Ayuso‐Sacido A, Wang Y, Starossom SC, Kivisäkk P, Zhu B, Meyer M, Bronson RT, Garcia‐Verdugo JM, Khoury SJ. 2011. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69: 878 – 891.en_US
dc.identifier.citedreferenceReimer MM, Sörensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T. 2008. Motor neuron regeneration in adult zebrafish. J Neurosci 28: 8510 – 8516.en_US
dc.identifier.citedreferenceRink E, Wullimann MF. 2001. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (stratum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889: 316 – 330.en_US
dc.identifier.citedreferenceRink E, Wullimann MF. 2002. Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Res Bull 57: 385 – 387.en_US
dc.identifier.citedreferenceRobel S, Berninger B, Götz M. 2011. The stem cell potential of glia: Lessons from reactive gliosis. Nat Revis Neurosci 12: 88 – 104.en_US
dc.identifier.citedreferenceRothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, G√∂tz M, Jagasia R, Bally‐Cuif L. 2011. Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 138: 1459 – 1469.en_US
dc.identifier.citedreferenceSchwarcz R, Bruno JP, Muchowski PJ, Wu H‐Q. 2012. Kynurenines in the mammalian brain: When physiology meets pathology. Nat Rev Neurosci 13: 465 – 477.en_US
dc.identifier.citedreferenceSchwarcz R, Fuxe K, Agnati LF, Hökfelt T, Coyle JT. 1979. Rotational behaviour in rats with unilateral striatal kainic acid lesions: A behavioural model for studies on intact dopamine receptors. Brain Res 170: 485 – 495.en_US
dc.identifier.citedreferenceSchwarcz R, Köhler C. 1983. Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38: 85 – 90.en_US
dc.identifier.citedreferenceSirbulescu RF, Zupanc GKH. 2011. Spinal cord repair in regeneration‐competent vertebrates: Adult teleost fish as a model system. Brain Res Rev 67: 73 – 93.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.