Show simple item record

Analysis and observation of spacecraft plume/ionosphere interactions during maneuvers of the space shuttle

dc.contributor.authorStephani, K. A.en_US
dc.contributor.authorBoyd, I. D.en_US
dc.contributor.authorBalthazor, R. L.en_US
dc.contributor.authorMcHarg, M. G.en_US
dc.contributor.authorMueller, B. A.en_US
dc.contributor.authorAdams, R. J.en_US
dc.date.accessioned2014-11-04T16:35:32Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:32Z
dc.date.issued2014-09en_US
dc.identifier.citationStephani, K. A.; Boyd, I. D.; Balthazor, R. L.; McHarg, M. G.; Mueller, B. A.; Adams, R. J. (2014). "Analysis and observation of spacecraft plume/ionosphere interactions during maneuvers of the space shuttle." Journal of Geophysical Research: Space Physics 119(9): 7636-7648.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109306
dc.description.abstractThis work employs in situ measurement data and constructive simulations to examine the underlying physical mechanisms that drive spacecraft plume interactions with the space environment in low‐Earth orbit. The study centers on observations of the enhanced flux of plasma generated during a maneuver of Space Shuttle Endeavour as part of the Sensor Test for Orion Relative Navigation Risk Mitigation experiment in May 2011. The Canary electrostatic analyzer (ESA) instrument mounted on the portside truss of the International Space Station indicated an elevated ion current during the shuttle maneuver. The apparent source of enhanced ion current is a result of interaction of the spacecraft thruster plume with the rarefied ambient ionosphere, which generates regions of relatively high density plasma through charge exchange between the neutral plume and ambient ions. To reconstruct this event, unsteady simulation data were generated using a combined direct simulation Monte Carlo/particle‐in‐cell methodology, which employed detailed charge exchange cross‐section data and a magnetic field model. The simulation provides local plasma characteristics at the ESA sensor location, and a sensor model is subsequently used to transform the local properties into a prediction of measured ion current. The predicted and observed total currents are presented as a function of time over a 30 s period of pulsed thruster firings. A strong correlation is observed in the temporal characteristics of the simulated and measured total current, and good agreement is also achieved in the total current predicted by the model. These results support conclusions that (1) the enhanced flux of plasma observed by the ESA instrument is associated with Space Shuttle thruster firings and (2) the simulation model captures the essential features of the plume interactions based on the observation data. Key Points Plumes interact with LEO plasma/B‐field Thruster burns associated with enhanced plasma flux Simulation model reproduces in situ observation dataen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherOxford Univ. Pressen_US
dc.subject.otherSpacecraft Plume Interactionen_US
dc.subject.otherDirect Simulation Monte Carloen_US
dc.subject.otherParticle‐In‐Cellen_US
dc.subject.otherUnsteady Plumesen_US
dc.subject.otherIonosphereen_US
dc.subject.otherElectrostatic Analyzeren_US
dc.titleAnalysis and observation of spacecraft plume/ionosphere interactions during maneuvers of the space shuttleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109306/1/jgra51246.pdf
dc.identifier.doi10.1002/2013JA019476en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceBirdsall, C., and A. Langdon ( 2004 ), Plasma Physics via Computer Simulation, Taylor and Francis, New York.en_US
dc.identifier.citedreferenceBurke, W., L. Gentile, J. Machuzak, D. Hardy, and D. Hunton ( 1995 ), Energy distributions of thruster pickup ions detected by the Shuttle Potential and Return Electron Experiments during TSS 1, J. Geophys. Res., 100 ( A10 ), 19,773 – 19,790, doi: 10.1029/95JA01214.en_US
dc.identifier.citedreferenceDressler, R., M. Bastian, D. Levandier, and E. Murad ( 1996 ), Empirical model of the state‐to‐state dynamics in near‐resonant hyperthermal X+ + H2O charge‐transfer reactions, Int. J. Mass Spectrom. Ion Processes, 159, 245 – 256.en_US
dc.identifier.citedreferenceDrakes, J., and D. Swann ( 1999 ), DSMC computations of the Progress‐M spacecraft retrofiring exhaust plume, paper presented at AIAA Aerospace Sciences Meeting (37th) and Exhibit, Paper No. AIAA – 99‐0975, Ft. Belvoir Defense Technical Information Center, Reno, Nev. on January 11‐14, 1999.en_US
dc.identifier.citedreferenceDahl, D., and J. Delmore ( 1987 ), The SIMION PCI/PS2 User's Manual Version 3.1, Idaho National Engineering Laboratory, Idaho Falls.en_US
dc.identifier.citedreferenceCai, C. ( 2005 ), Theoretical and numerical studies of plume flows in vacuum chambers, PhD dissertation, Univ. of Michigan, Ann Arbor, Mich.en_US
dc.identifier.citedreferenceBernhardt, P., et al. ( 2012 ), Ground and space‐based measurement of rocket engine burns in the ionosphere, IEEE Trans. Plasma Sci., 40 ( 5 ), 1267 – 1286.en_US
dc.identifier.citedreferenceBird, G. ( 1994 ), Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Univ. Press, Oxford, U. K.en_US
dc.identifier.citedreferenceBoyd, I., and R. Dressler ( 2002 ), Far field modeling of the plasma plume of a Hall thruster, J. Appl. Phys., 92 ( 4 ), 1764 – 1774.en_US
dc.identifier.citedreferenceStuit, T. ( 2011 ), Designing the STS‐134 re‐rendezvous: A preparation for future crewed rendezvous missions, paper presented at AIAA SPACE 2011 Conference Exposition Online Proceedings, AIAA Paper No. 2011‐7189, Timothy Stuit United Space Alliance, Houston, Tex.en_US
dc.identifier.citedreferenceStephani, K., and I. Boyd ( 2014 ), Detailed modeling and analysis of spacecraft plume/ionosphere interactions in low Earth orbit, J. Geophys. Res. Space Physics, 119, 2101 – 2116, doi: 10.1002/2013JA019222.en_US
dc.identifier.citedreferenceMcMahon, W., R. Salter, R. Hills, and D. Delorey ( 1983 ), Measured electron contribution to shuttle plasma environment, paper presented at Shuttle Environment and Operations Meeting, AIAA Paper No. AIAA‐83‐2598, Washington, D. C.en_US
dc.identifier.citedreferenceLindsay, B., R. Rejoub, D. Sieglaff, and R. Stebbings ( 2001 ), Charge transfer of keV O + ions with CO and H 2 O, J. Phys. B: At., Mol. Opt. Phys., 34, 2159, doi: 10.1088/0953‐4075/34/11/308.en_US
dc.identifier.citedreferenceLi, X., Y.‐L. Huang, G. Flesch, and C. Ng ( 1995 ), Absolute total cross sections for the ion‐molecule reaction O + ( 4 S o )+H 2 O, J. Chem. Phys., 102 ( 5100–5101 ).en_US
dc.identifier.citedreferenceKelley, M. C. ( 1989 ), The Earth's Ionosphere, Acad. Press, San Diego, Calif.en_US
dc.identifier.citedreferenceKarabadzhak, G., Y. Plastinin, B. Khmelinin, V. Teslenko, N. Shvets, J. Drakes, D. Swann, and W. McGregor ( 1997 ), Experimentation using the Mir station as a space laboratory, paper presented at AIAA Aerospace Sciences Meeting, Reno, Nev., AIAA Paper No. AIAA‐97‐0288.en_US
dc.identifier.citedreferenceKaplan, C., and P. Bernhardt ( 2010 ), Effect of an altitude‐dependent background atmosphere on shuttle plumes, J. Spacecr. Rockets, 47 ( 4 ), 700 – 704.en_US
dc.identifier.citedreferenceFeldmesser, H., M. Darrin, R. Osiander, L. Paxton, A. Rogers, J. Marks, M. McHarg, R. Balthazor, L. Krause, and J. FitzGerald ( 2010 ), Canary: Ion spectroscopy for ionospheric sensing, paper presented at SPIE 7691, Space Missions and Technologies, Orlando, Fla., doi: 10.1117/12.850414.en_US
dc.identifier.citedreferenceTurner, B., and J. Rutherford ( 1968 ), Charge transfer and ion‐atom interchange reactions of water vapor ions, J. Geophys. Res., 73, 6751 – 6758.en_US
dc.identifier.citedreferenceEnloe, C., K. Habush, R. Haaland, T. Patterson, C. Richardson, C. Lazidis, and R. Whiting ( 2003 ), Miniaturized electrostatic analyzer manufactured using photolithographic etching, Rev. Sci. Instrum., 74 ( 3 ), 1192 – 1195.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.