Show simple item record

Equatorial Pacific productivity changes near the Eocene‐Oligocene boundary

dc.contributor.authorMoore, T. C.en_US
dc.contributor.authorWade, Bridget S.en_US
dc.contributor.authorWesterhold, Thomasen_US
dc.contributor.authorErhardt, Andrea M.en_US
dc.contributor.authorCoxall, Helen K.en_US
dc.contributor.authorBaldauf, Jacken_US
dc.contributor.authorWagner, Meghanen_US
dc.date.accessioned2014-11-04T16:35:34Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:34Z
dc.date.issued2014-09en_US
dc.identifier.citationMoore, T. C.; Wade, Bridget S.; Westerhold, Thomas; Erhardt, Andrea M.; Coxall, Helen K.; Baldauf, Jack; Wagner, Meghan (2014). "Equatorial Pacific productivity changes near the Eocene‐Oligocene boundary." Paleoceanography 29(9): 825-844.en_US
dc.identifier.issn0883-8305en_US
dc.identifier.issn1944-9186en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109311
dc.description.abstractThere is general agreement that productivity in high latitudes increased in the late Eocene and remained high in the early Oligocene. Evidence for both increased and decreased productivity across the Eocene‐Oligocene transition (EOT) in the tropics has been presented, usually based on only one paleoproductivity proxy and often in sites with incomplete recovery of the EOT itself. A complete record of the Eocene‐Oligocene transition was obtained at three drill sites in the eastern equatorial Pacific Ocean (ODP Site 1218 and IODP Sites U1333 and U1334). Four paleoproductivity proxies that have been examined at these sites, together with carbon and oxygen isotope measurements on early Oligocene planktonic foraminifera, give evidence of ecologic and oceanographic change across this climatically important boundary. Export productivity dropped sharply in the basal Oligocene (~33.7 Ma) and only recovered several hundred thousand years later; however, overall paleoproductivity in the early Oligocene never reached the average levels found in the late Eocene and in more modern times. Changes in the isotopic gradients between deep‐ and shallow‐living planktonic foraminifera suggest a gradual shoaling of the thermocline through the early Oligocene that, on average, affected accumulation rates of barite, benthic foraminifera, and opal, as well as diatom abundance near 33.5 Ma. An interval with abundant large diatoms beginning at 33.3 Ma suggests an intermediate thermocline depth, which was followed by further shoaling, a dominance of smaller diatoms, and an increase in average primary productivity as estimated from accumulation rates of benthic foraminifera. Key Points Oligocene productivity was lower than in Eocene and modern times Barite, benthic foraminifera proxies appear antithetical to opal and diatoms The thermocline appears to have been deep in the earliest Oligoceneen_US
dc.publisherIntegr. Ocean Drill. Program, College Stationen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPaleoproductivityen_US
dc.subject.otherEquatorial Pacificen_US
dc.subject.otherEocene‐Oligoceneen_US
dc.titleEquatorial Pacific productivity changes near the Eocene‐Oligocene boundaryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109311/1/palo20143.pdf
dc.identifier.doi10.1002/2014PA002656en_US
dc.identifier.sourcePaleoceanographyen_US
dc.identifier.citedreferencePfuhl, H. A., and I. N. McCave ( 2005 ), Evidence for late Oligocene establishment of the Antarctic Circumpolar Current, Earth Planet. Sci. Lett., 235, 715 – 728.en_US
dc.identifier.citedreferenceSijp, W. P., and M. H. England ( 2004 ), Effect of the Drake Passage throughflow on global climate, J. Phys. Oceanogr., 34, 1254 – 1266.en_US
dc.identifier.citedreferenceSijp, W. P., M. H. England, and J. R. Toggweiler ( 2009 ), Effect of ocean gateway changes under greenhouse warmth, J. Clim., 22, 6639 – 6652.en_US
dc.identifier.citedreferenceSijp, W. P., M. H. England, and M. Huber ( 2011 ), Effect of the deepening of the Tasman Gateway on the global ocean, Paleoceanography, 26, PA4207, doi: 10.1029/2011PA002143.en_US
dc.identifier.citedreferenceSmetacek, V. ( 1999 ), Diatoms and the ocean carbon cycle, Protist, 150, 25 – 32.en_US
dc.identifier.citedreferenceStickley, C. E., H. Brinkhuis, S. A. Schellenberg, A. Sluijs, U. Rohl, M. Fuller, M. Grauert, M. Huber, J. Warnaar, and G. L. Williams ( 2004 ), Timing and nature of the deepening of the Tasmanian Gateway, Paleoceanography, 19, PA4027, doi: 10.1029/2004PA001022.en_US
dc.identifier.citedreferenceTakata, H., R. Nomura, and B.‐K. Khim ( 2010 ), Response of abyssal benthic foraminifera to mid‐Oligocene glacial events in the eastern Equatorial Pacific Ocean (ODP Leg 199), Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 11 – 37.en_US
dc.identifier.citedreferenceThomas, E., and A. J. Gooday ( 1996 ), Cenozoic deep‐sea benthic foraminifers: Tracers for changes in oceanic productivity?, Geology, 24 ( 4 ), 355 – 358.en_US
dc.identifier.citedreferenceToggweiler, J. R., and H. Bjornsson ( 2000 ), Drake Passage and paleoclimate, J. Quat. Sci., 15, 319 – 328.en_US
dc.identifier.citedreferenceTorres, M. E., H. J. Brumsack, G. Bohrmann, and K. C. Emeis ( 1996 ), Barite fronts in continental sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in authigenic fronts, Chem. Geol., 127, 125 – 139.en_US
dc.identifier.citedreferenceVan Andel, T. H. ( 1975 ), Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments, Earth Planet. Sci. Lett., 26, 187 – 194.en_US
dc.identifier.citedreferenceVan der Zwaan, G. J., I. A. P. Duijnstee, M. den Dulk, S. R. Ernst, N. T. Jannink, and T. J. Kouwenhoven ( 1999 ), Benthic foraminifers: Proxies or problems? A review of paleocological concepts, Earth Sci. Rev., 4, 213 – 236.en_US
dc.identifier.citedreferenceVanden Berg, M. D., and R. D. Jarrard ( 2004 ), Cenozoic mass accumulation rates in the equatorial Pacific based on high‐resolution mineralogy of Ocean Drilling Program Leg 199, Paleoceanography, 19, PA2021, doi: 10.1029/2003PA000928.en_US
dc.identifier.citedreferenceVia, R. K., and D. J. Thomas ( 2006 ), Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep‐water production in the North Atlantic, Geology, 34, 441 – 444, doi: 10.1130/G22545.1.en_US
dc.identifier.citedreferenceWade, B. S., and D. Kroon ( 2002 ), Middle Eocene regional climate instability: Evidence from the western North Atlantic, Geology, 30 ( 11 ), 1011 – 1014, doi: 10.1130/0091‐7613(2002)030.en_US
dc.identifier.citedreferenceWade, B. S., and P. N. Pearson ( 2008 ), Planktonic foraminiferal turnover, diversity fluctuations and geochemical signals across the Eocene/Oligocene boundary in Tanzania, Mar. Micropaleontol., 68, 244 – 255.en_US
dc.identifier.citedreferenceWade, B. S., W. A. Berggren, and R. K. Olsson ( 2007 ), The biostratigraphy and paleobiology of Oligocene planktonic foraminifera from the equatorialPacific Ocean (ODP Site 1218), Mar. Micropaleontol., 62, 167 – 179.en_US
dc.identifier.citedreferenceWade, B. S., A. J. P. Houben, W. Quaijtaal, S. Schouten, Y. Rosenthal, K. G. Miller, M. E. Katz, J. D. Wright, and H. Brinkhuis ( 2012 ), Multiproxy record of abrupt sea‐surface cooling across the Eocene‐Oligocene transition in the Gulf of Mexico, Geology, 40 ( 2 ), 159 – 162, doi: 10.1130/G32577.1.en_US
dc.identifier.citedreferenceWeber, M. E., and N. G. Pisias ( 1999 ), Spatial and temporal distribution of biogenic carbonate and opal in deep‐sea sediments from the eastern equatorial Pacific: Implications for ocean history since 1.3 Ma, Earth Planet. Sci. Lett., 174, 59 – 73.en_US
dc.identifier.citedreferenceWesterhold, T., et al. ( 2012 ), Revised composite depth scales and integration of IODP Sites U1331 ‐U1334 and ODP Sites 1218–1220, in Proceeding IODP, vol. 320/321, edited by H. Pälike et al., Integr. Ocean Drill. Program Management International, Inc., Tokyo, doi: 10.2204/iodp.proc.320321.201.2012.en_US
dc.identifier.citedreferenceWesterhold, T., U. Röhl, H. Pälike, R. Wilkens, P. A. Wilson, and G. Acton ( 2014 ), Orbitally tuned time scale and astronomical forcing in the middle Eocene to early Oligocene, Clim. Past, 10, 955 – 973, doi: 10.5194/cp‐10‐955‐2014.en_US
dc.identifier.citedreferenceYang, S., E. Galbraith, and J. Palter ( 2013 ), Coupled climate impacts of the Drake Passage and the Panama Seaway, Clim. Dyn., 43, 37 – 52, doi: 10.1007/s00382‐013‐1809‐6.en_US
dc.identifier.citedreferenceZachos, J. C., T. M. Quinn, and K. A. Salamy ( 1996 ), High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition, Paleoceanography, 11, 251 – 266, doi: 10.1029/96PA00571.en_US
dc.identifier.citedreferenceZhang, Z., Q. Yan, and H. Wang ( 2010 ), Has the Drake Passage played an essential role in the Cenozoic cooling, Atmos. Ocean Sci. Lett., 3 ( 5 ), 288 – 292.en_US
dc.identifier.citedreferenceZhang, Z., K. H. Nisancioglu, F. Flatøy, M. Bentsen, I. Bethke, and I. Wang ( 2011 ), Tropical seaways played a more important role than high latitude seaways in Cenozoic cooling, Clim. Past, 7, 801 – 813.en_US
dc.identifier.citedreferenceAller, J. Y. ( 1997 ), Benthic community response to temporal and spatial gradients in physical disturbance within a deep‐sea western boundary region, Deep Sea Res., Part I, 44 ( 1 ), 39 – 69.en_US
dc.identifier.citedreferenceAnderson, L. D., and M. L. Delaney ( 2005 ), Middle Eocene to early Oligocene paleoceanography from Agulhas Ridge, Southern Ocean (Ocean Drilling Program Leg 177, Site 1090), Paleoceanography, 20, PA1013, doi: 10.1029/2004PA001043.en_US
dc.identifier.citedreferenceBaldauf, J. G. ( 2013 ), Data report: Diatoms from Sites U1334 and U1338, Expedition 320/321, in Proc IODP, vol. 320/321, edited by H. Pälike et al., pp. 1 – 8, Integr. Ocean Drill. Program, College Station, Tex., doi: 10.2204/iodp.proc.320321.215.2013.en_US
dc.identifier.citedreferenceBarker, P. F., and J. Burrell ( 1977 ), The opening of Drake Passage, Mar. Geol., 25, 15 – 34.en_US
dc.identifier.citedreferenceBarker, P. F., G. M. Filippelli, F. Florindo, E. E. Martin, and H. D. Scher ( 2007 ), Onset and role of the Antarctic Circumpolar Current, Deep Sea Res., Part II, 54, 2388 – 2398.en_US
dc.identifier.citedreferenceBeltran, C., G. Rousselle, J. Backman, B. S. Wade, and M. A. Sicre ( 2014 ), Paleoenvironmental conditions for the development of calcareous nannofossil acme during the late Miocene in the Eastern Equatorial Pacific, Paleoceanography, 29, 210 – 222, doi: 10.1002/2013PA002506.en_US
dc.identifier.citedreferenceBohaty, S. M., and J. C. Zachos ( 2003 ), Significant Southern Ocean warming event in the late middle Eocene, Geology, 31, 1017 – 1020.en_US
dc.identifier.citedreferenceBornemann, A., and R. D. Norris ( 2007 ), Size‐related stable isotope changes in Late Cretaceous planktic foraminifera: Implications for paleoecology and photosymbiosis, Mar. Micropaleontol., 65, 32 – 42, doi: 10.1016/j.marmicro.2007.05.005.en_US
dc.identifier.citedreferenceCaron, D. A., A. F. Michaels, N. R. Swanberg, and F. A. Howse ( 1995 ), Primary productivity by symbiont‐bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda, J. Plank. Res., 17 ( 1 ), 103 – 129.en_US
dc.identifier.citedreferenceCervato C., and L. H. Burckle ( 2003 ), Pattern of first and last appearance in diatoms: Oceanic circulation and the position of the Polar Fronts during the Cenozoic, Paleoceanography, 18 ( 2 ), 1055, doi: 10.1029/2002PA000805.en_US
dc.identifier.citedreferenceCoxall, H. K., and P. A. Wilson ( 2011 ), Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling, Paleoceanography, 26, PA2221, doi: 10.1029/2010PA002021.en_US
dc.identifier.citedreferenceCoxall, H. K., P. A. Wilson, H. Pälike, C. H. Lear, and J. Backman ( 2005 ), Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean, Nature, 433 ( 7021 ), 53 – 57, doi: 10.1038/nature03135.en_US
dc.identifier.citedreferenceDalziel, I. W. D., L. A. Lawver, J. A. Pearce, P. F. Barker, A. R. Hastie, D. N. Barfod, H.‐W. Schenke, and M. B. Davis ( 2013 ), A potential barrier to deep Antarctic circumpolar flow until the late Miocene?, Geology, 41 ( 9 ), 947 – 950, doi: 10.1130/G34352.1.en_US
dc.identifier.citedreferenceDeConto, R. M., and D. Pollard ( 2003 ), Rapid Cenozoic glaciation of Antarctica triggered by declining atmospheric CO 2, Nature, 421, 245 – 249.en_US
dc.identifier.citedreferenceDiester‐Haass, L. ( 1995 ), Middle Eocene to early Oligocene paleoceanography of the Antarctic Ocean (Maud Rise, ODP 13, Site 689): Change from a low to a high productivity ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 113, 311 – 334.en_US
dc.identifier.citedreferenceDiester‐Haass, L., and R. Zahn ( 1996 ), Eocene‐Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity, Geology, 24, 163 – 166, doi: 10.1130/0091‐7613.en_US
dc.identifier.citedreferenceDinkelman, M. G. ( 1973 ), Radiolarian stratigraphy: Leg 16, Deep Sea Drilling Project, in Initial Report DSDP, vol. 16, edited by T. J. van Andel et al., pp. 747 – 813, U.S. Government Printing Office, Wash., doi: 10.2973/dsdp.proc.16.128.1973.en_US
dc.identifier.citedreferenceDunkley Jones, T., P. R. Bown, P. N. Pearson, B. Wade, H. Coxall, and C. H. Lear ( 2008 ), Major shifts in calcareous phytoplankton assemblages through the Eocene‐Oligocene transition of Tanzania and their implications for low‐latitude primary production, Paleoceanography, 23, A4204, doi: 10.1029/2008PA001640.en_US
dc.identifier.citedreferenceDymond, J., E. Suess, and M. Lyle ( 1992 ), Barium in deep‐sea sediment: A geochemical proxy for paleoproductivity, Paleoceanography, 7, 163 – 181, doi: 10.1029/92PA00181.en_US
dc.identifier.citedreferenceEagle, M., A. Paytan, K. R. Arrigo, G. van Dijken, and R. W. Murray ( 2003 ), A comparison between excess barium and barite as indicators of carbon export, Paleoceanography, 18 ( 1 ), 1021, doi: 10.1029/2002PA000793.en_US
dc.identifier.citedreferenceEgan, K. E., R. E. M. Rickaby, K. R. Hendry, and A. N. Halliday ( 2013 ), Opening the gateways for diatoms primes Earth for Antarctic glaciation, EPSL, 375, 34 – 43.en_US
dc.identifier.citedreferenceEgge, J. K., and D. L. Aksnes ( 1992 ), Silicate as a regulating nutrient in phytoplankton competition, Mar. Ecol. Prog. Ser., 83, 281 – 289.en_US
dc.identifier.citedreferenceErhardt, A. M., H. Pälike, and A. Paytan ( 2013 ), High‐resolution record of export production in the eastern equatorial Pacific across the Eocene‐ Oligocene transition and relationships to global climatic records, Paleoceanography, 28, 1 – 13, doi: 10.1029/2012PA002347.en_US
dc.identifier.citedreferenceExon, N. F., J. P. Kennett, and M. J. Malone ( 2004 ), Leg 189 synthesis: Cretaceous–Holocene history of the Tasmanian Gateway, in Proceedings ODP, Science Results, vol. 189, edited by N. F. Exon et al., pp. 1 – 37, Ocean Drill. Program, College Station, Tex., doi: 10.2973/odp.proc.sr.189.101.2004.en_US
dc.identifier.citedreferenceEzard, T. H. G., T. Aze, P. N. Pearson, and A. Purvis ( 2011 ), Interplay between changing climate and species' ecology drives macroevolutionary dynamics, Science, 332, 349 – 351.en_US
dc.identifier.citedreferenceFariduddin, M., and P. Loubere ( 1997 ), The surface ocean productivity response of deeper water benthic foraminifera in the Atlantic Ocean, Mar. Micropaleontol., 32, 289 – 310.en_US
dc.identifier.citedreferenceFaul, K. L., and M. L. Delaney ( 2010 ), A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, south Indian Ocean, Paleoceanography, 25, PA3214, doi: 10.1029/2009PA001916.en_US
dc.identifier.citedreferenceFaul, K. L., A. C. Ravelo, and M. L. Delaney ( 2000 ), Reconstructions of upwelling, productivity, and photic zone depth in the eastern equatorial pacific ocean using planktonic foraminiferal stable isotopes and abundances, J. Foram. Res., 30 ( 2 ), 110 – 125.en_US
dc.identifier.citedreferenceFeely, R. A., M. Lewison, G. L. Massoth, G. Robert‐Baldo, J. W. Lavelle, R. H. Byrne, K. L. Von‐Damm, and H. C. Curl ( 1987 ), Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge, J. Geophys. Res., 92, 11,347 – 11,363, doi: 10.1029/JB092iB11p11347.en_US
dc.identifier.citedreferenceFeely, R. A., T. L. Geiselman, E. T. Backer, G. J. Massoth, and S. R. Hammond ( 1990 ), Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial volcano, Juan de Fuca Ridge, J. Geophys. Res., 95, 12,855 – 12,873, doi: 10.1029/JB095iB08p12855.en_US
dc.identifier.citedreferenceFrancois, R., S. Honjo, R. Krishfield, and S. Manganini ( 2002 ), Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochem. Cycles, 16 ( 4 ), 1087, doi: 10.1029/2001GB001722.en_US
dc.identifier.citedreferenceFunakawa, S., H. Nishi, T. C. Moore, and C. A. Nigrini ( 2006 ), Radiolarian faunal turnover and paleoceanographic change around Eocene/Oligocene boundary in the central equatorial Pacific, ODP Leg 199, Holes 1218A, 1219A, and 1220A, Palaeogeogr. Palaeoclimatol. Palaeoecol., 230, 183 – 203, doi: 10.1016/j.palaeo.2005.07.014.en_US
dc.identifier.citedreferenceGooday, A. J. ( 1994 ), The biology of deep‐sea foraminifera: A review of some advances and their significance in paleoecology, Palaios, 9, 14 – 31.en_US
dc.identifier.citedreferenceGooday, A. J., and A. E. Rathburn ( 1999 ), Temporal variability in living deep‐sea benthic foraminifera: A review, Earth Sci. Rev., 4, 187 – 212.en_US
dc.identifier.citedreferenceGrant, K. M., and G. R. Dickens ( 2002 ), Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom, Palaeogeogr. Palaeoclimatol. Palaeoecol., 187, 61 – 82.en_US
dc.identifier.citedreferenceGriffith, E., M. Calhoun, E. Thomas, K. Averyt, A. Erhardt, T. Bralower, M. Lyle, A. Olivarez Lyle, and A. Paytan ( 2010 ), Export productivity and carbonate accumulation in the Pacific Basin at the transition from a greenhouse to icehouse climate (late Eocene to early Oligocene), Paleoceanography, 25, PA3212, doi: 10.1029/2010PA001932.en_US
dc.identifier.citedreferenceHayward, B. W., H. Neil, R. Carter, H. R. Grenfell, and J. J. Hayward ( 2002 ), Factors influencing the distribution patterns of Recent deep‐sea benthic foraminifera, east of New Zealand, Southwest Pacific Ocean, Mar. Micropaleontol., 46, 139 – 176.en_US
dc.identifier.citedreferenceHenson, S. A., R. Sanders, and E. Madsen ( 2012 ), Global patterns in efficiency of particulate organic carbon export, and transfer to the deep ocean, Global Biogeochem. Cycles, 26, GB1028, doi: 10.1029/2011GB004099.en_US
dc.identifier.citedreferenceHerguera, J. C. ( 2000 ), Last glacial paleoproductivity patterns in the eastern equatorial Pacific: Benthic foraminifera records, Mar. Micropaleontol., 40, 259 – 275.en_US
dc.identifier.citedreferenceHerguera, J. C., and W. H. Berger ( 1991 ), Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west‐equatorial Pacific, Geology, 19, 1173 – 1176.en_US
dc.identifier.citedreferenceHill, D. J., A. M. Haywood, P. J. Valdes, J. E. Francis, D. J. Lunt, B. S. Wade, and V. C. Bowman ( 2013 ), Paleogeographic controls on the onset of the Antarctic Circumpolar Current, Geophys. Res. Lett., 40, 5199 – 5204, doi: 10.1002/grl.50941.en_US
dc.identifier.citedreferenceHuber, M., and D. Nof ( 2006 ), The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 9 – 28.en_US
dc.identifier.citedreferenceHuber, M., and L. C. Sloan ( 2001 ), Heat transport, deep waters and thermal gradients: Coupled simulation of an Eocene “greenhouse” climate, Geophys. Res. Lett., 28, 3481 – 3484, doi: 10.1029/2001GL012943.en_US
dc.identifier.citedreferenceHuber, M., H. Brinkhuis, C. E. Stickley, K. Doos, A. Sluijs, J. Warnaar, S. A. Schellenberg, and G. L. Williams ( 2004 ), Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters?, Paleoceanography, 19, PA4026, doi: 10.1029/2004PA001014.en_US
dc.identifier.citedreferenceJohn, E., P. N. Pearson, H. B. Birch, H. K. Coxall, B. S. Wade, and G. L. Foster ( 2013 ), Warm ocean processes and carbon cycling in the Eocene, Phil. Trans. R. Soc. A, 371, doi: 10.1098/rsta.2013.0099.en_US
dc.identifier.citedreferenceKamikuri, S., and B. S. Wade ( 2012 ), Radiolarian magnetobiochronology and faunal turnover across the middle/late Eocene boundary at Ocean Drilling Program Site 1052 in the western North Atlantic Ocean, Mar. Micropaleontol., 88–89, 41 – 53.en_US
dc.identifier.citedreferenceKatz, M. E., B. S. Cramer, J. R. Toggweiler, G. Esmay, C. Liu, K. G. Miller, Y. Rosenthal, B. S. Wade, and J. D. Wright ( 2011 ), Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure, Science, 332, 1076 – 1078.en_US
dc.identifier.citedreferenceKennett, J. P., and N. J. Shackleton ( 1976 ), Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago, Nature, 260, 513 – 515.en_US
dc.identifier.citedreferenceKennett, J. P., and P. F. Barker ( 1990 ), Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean‐drilling perspective, Proc. ODP, Sci. Results, 113, 937 – 960.en_US
dc.identifier.citedreferenceKroopnick, P. ( 1985 ), The distribution of 13 C of ∑CO 2 in the world oceans, Deep Sea Res., 32, 57 – 84.en_US
dc.identifier.citedreferenceLaskar, J., A. Fienga, M. Gastineau, and H. Manche ( 2011 ), La2010: A new orbital solution for the long‐term motion of the Earth, Astron. Astrophys., 532, A89, doi: 10.1051/0004‐6361/201116836.en_US
dc.identifier.citedreferenceLatimer, J. C., and G. M. Filippelli ( 2002 ), Eocene to Miocene terrigenous imports and export production: Geochemical evidence from ODP Leg 177, Site 1090, Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 151 – 164.en_US
dc.identifier.citedreferenceLaws, E. A., P. G. Falkowski, W. O. Smith Jr., H. Ducklow, and J. J. McCarthy ( 2000 ), Temperature effects on export production the ocean, Global Biogeochem. Cycles, 14, 1231 – 1246, doi: 10.1029/1999GB001229.en_US
dc.identifier.citedreferenceLawver, L. A., and L. M. Gahagan ( 1998 ), Opening of Drake Passage and its impact on Cenozoic ocean circulation, in Tectonic Boundary Conditions for Climate Reconstructions, edited by T. J. Crowley and K. C. Burke, pp. 212 – 223, Oxford Univ. Press, Oxford.en_US
dc.identifier.citedreferenceLawver, L. A., and L. M. Gahagan ( 2003 ), Evolution of Cenozoic seaways in the circum‐Antarctic region, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198, 11 – 38.en_US
dc.identifier.citedreferenceLazarus, D. B., B. Kotrc, G. Wulf, and D. N. Schmidt ( 2009 ), Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability, Proc. Natl. Acad. Sci. U.S.A., 106 ( 23 ), 9333 – 9338, doi: 10.1073/pnas.0812979106.en_US
dc.identifier.citedreferenceLear, C. H., H. Elderfield, and P. A. Wilson ( 2003 ), A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes, Earth Planet. Sci. Lett., 208, 69 – 84.en_US
dc.identifier.citedreferenceLear, C. H., T. R. Bailey, P. N. Pearson, H. K. Coxall, and Y. Rosenthal ( 2008 ), Cooling and ice growth across the Eocene‐Oligocene transition, Geology, 36, 251 – 254, doi: 10.1130/G24584A.1.en_US
dc.identifier.citedreferenceLevin, L. A., and C. L. Thomas ( 1989 ), The influence of hydrodynamic regime on infaunal assemblages inhabiting carbonate sediments on central Pacific seamounts, Deep‐Sea Res., 26 ( 12 ), 1897 – 1915.en_US
dc.identifier.citedreferenceLisitzin, A. P. ( 1972 ), Distribution of siliceous microfossils in suspension and in bottom sediments, Spec. Publ. Soc. Econ. Paleontol. Miner., 171, 173 – 195.en_US
dc.identifier.citedreferenceLitchman, E., C. A. Klausmeier, and K. Yoshiyama ( 2009 ), Contrasting size evolution in marine and freshwater diatoms, Proc. Natl. Acad. Sci. U.S.A., 106 ( 8 ), 2665 – 2670, doi: 10.1073/pnas.0810891106.en_US
dc.identifier.citedreferenceLiu, Z., M. Pagani, D. Zinniker, R. DeConto, M. Huber, H. Brinkhuis, S. R. Shah, R. M. Leckie, and A. Pearson ( 2009 ), Global cooling during the Eocene‐Oligocene climate transition, Science, 323, 1187 – 1190.en_US
dc.identifier.citedreferenceLivermore, R. A., A. Nankivell, G. Eagles, and P. Morris ( 2005 ), Paleogene opening of Drake Passage, Earth Planet. Sci. Lett., 236, 459 – 470.en_US
dc.identifier.citedreferenceLivermore, R. A., C.‐D. Hillenbrand, M. Meredith, and G. Eagles ( 2007 ), Drake Passage and Cenozoic climate: An open and shut case?, Geochem, Geophys. Geosyst., 8, Q01005, doi: 10.1029/2005GC001224.en_US
dc.identifier.citedreferenceLoubere, P. ( 1994 ), Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera, Paleoceanography, 9, 723 – 737, doi: 10.1029/94PA01624.en_US
dc.identifier.citedreferenceLoubere, P. ( 2002 ), Remote vs. local control of changes in eastern equatorial Pacific bioproductivity from the Last Glacial Maximum to the present, Global Planet. Change, 35, 113 – 126.en_US
dc.identifier.citedreferenceLyle, M., A. Olivarez Lyle, J. Backman, and A. Tripati ( 2005 ), Biogenic sedimentation in the Eocene equatorial Pacific—The stuttering greenhouse and Eocene carbonate compensation depth, in Proceedings ODP, Sci. Results, vol. 199, edited by P. A. Wilson, M. Lyle, and J. V. Firth, pp. 1 – 35, Ocean Drill. Program, College Station, Tex., doi: 10.2973/odp.proc.sr.199.201.2005.en_US
dc.identifier.citedreferenceLyle, M., S. Gibbs, T. C. Moore, and D. K. Rea ( 2008 ), Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific, Geology, 35 ( 8 ), 691 – 694, doi: 10.1130/G23806A.1.en_US
dc.identifier.citedreferenceMisra, S., and P. N. Froelich ( 2012 ), Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering, Science, 335, 818 – 823.en_US
dc.identifier.citedreferenceMoore, T. C. ( 2013 ), Erosion and reworking of Pacific sediments in the Eocene‐Oligocene transition, Paleoceanography, 27, 1 – 13, doi: 10.1002/palo.20027.en_US
dc.identifier.citedreferenceMoore, T. C., and S. Kamikuri ( 2012 ), Data report: Radiolarian stratigraphy across the Eocene/Oligocene boundary in the equatorial Pacific, Sites 1218, U1333, and U1334, in Proceedings IODP, vol. 320/321, edited by H. Pälike et al., Integr. Ocean Drill. Program Management International, Inc., Tokyo, doi: 10.2204/iodp.proc.320321.204.2012.en_US
dc.identifier.citedreferenceMoore, T. C., Jr. ( 1969 ), Radiolaria: Change in skeletal weight and resistance to solution, Geol. Soc. Am. Bull., 80, 2103 – 2108.en_US
dc.identifier.citedreferenceMoore, T. C., Jr. ( 1973 ), Radiolaria from Leg 17 of the Deep Sea Drilling Project, in Initial Report DSDP, vol. 17, edited by E. Winterer et al., pp. 797 – 870, U.S. Government Printing Office, Wash.en_US
dc.identifier.citedreferenceMoore, T. C., Jr., J. Backman, I. Raffi, C. Nigrini, A. Sanfilippo, H. Pälike, and M. Lyle ( 2004 ), The Paleogene tropical Pacific: Clues to circulation, productivity and plate motion, Paleoceanography, 19, PA3013, doi: 10.1029/2003PA000998.en_US
dc.identifier.citedreferenceMoore, T. C., Jr., R. D. Jarrard, A. Olivarez Lyle, and M. Lyle ( 2008 ), Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone, Paleoceanography, 23, PA2202, doi: 10.1029/2007PA001514.en_US
dc.identifier.citedreferenceMurray, D. W., J. W. Farrell, and V. McKenna ( 1995 ), Biogenic sedimentation at site 847, eastern equatorial pacific ocean, during the past 3 m.y, in Proceedings ODP, Science Results, vol. 138, edited by N. G. Pisias et al., pp. 429 – 459, Ocean Drill. Program, College Station, Tex.en_US
dc.identifier.citedreferenceMurray, R. W., M. Leinen, and C. W. Knowlton ( 2012 ), Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean, Nat. Geosci., 5, 270 – 274.en_US
dc.identifier.citedreferenceNigrini, C. A., A. Sanfilippo, and T. C. Moore Jr. ( 2006 ), Cenozoic radiolarian biostratigraphy: A magnetobiostratigraphic chronology of Cenozoic sequences from ODP Sites 1218, 1219, and 1220, equatorial Pacific, in Proceedings ODP, Sci. Results, vol. 199, edited by P. A. Wilson, M. Lyle, and J. V. Firth, pp. 1 – 76, Ocean Drill. Program, College Station, Tex., doi: 10.2973/odp.proc.sr.199.225.2006.en_US
dc.identifier.citedreferenceNilsen, E. B., L. D. Anderson, and M. L. Delaney ( 2003 ), Paleoproductivity, nutrient burial, climate change and the carbon cycle in the western equatorial Atlantic across the Eocene/Oligocene boundary, Paleoceanography, 18 ( 1 ), 1057, doi: 10.1029/2002PA000804.en_US
dc.identifier.citedreferenceNong, G. T., R. G. Najjar, D. Seidov, and W. H. Peterson ( 2000 ), Simulation of ocean temperature change due to the opening of Drake Passage, Geophys. Res. Lett., 27, 2689 – 2692, doi: 10.1029/1999GL011072.en_US
dc.identifier.citedreferenceOlivarez Lyle, A., and M. Lyle ( 2006a ), Organic carbon and barium in Eocene sediments: Possible controls on nutrient recycling in the Eocene equatorial Pacific Ocean, in Proceedings ODP, Science Results, vol. 199, edited by P. A. Wilson, M. Lyle, and J. V. Firth, pp. 1 – 33, Ocean Drill. Program, College Station, Tex.en_US
dc.identifier.citedreferenceOlivarez Lyle, A., and M. W. Lyle ( 2002 ), Determination of biogenic opal in pelagic marine sediments: A simple method revisited in the Eocene equatorial Pacific Ocean, in Proceedings ODP, Initinial Results, vol. 199, edited by P. A. Wilson, M. Lyle, and J. V. Firth, pp. 1 – 21, Ocean Drill. Program, College Station, Tex.en_US
dc.identifier.citedreferenceOlivarez Lyle, A., and M. W. Lyle ( 2006b ), Missing organic carbon in Eocene marine sediments: Is metabolism the biological feedback that maintains end‐member climates?, Paleoceanography, 21, PA2007, doi: 10.1029/2005PA001230.en_US
dc.identifier.citedreferencePagani, M., M. Huber, Z. Liu, S. M. Bohaty, J. Henderiks, W. Sijp, S. Krishnan, and R. M. DeConto ( 2011 ), The role of carbon dioxide during the onset of Antarctic glaciation, Science, 334, 1261 – 1264.en_US
dc.identifier.citedreferencePaillard, D., L. Labeyrie, and P. Yiou ( 1996 ), Macintosh program performs time‐series analysis, Eos Trans. AGU, 77, 379, doi: 10.1029/96EO00259.en_US
dc.identifier.citedreferencePälike, H., R. D. Norris, J. O. Herrle, P. A. Wilson, H. K. Coxall, C. H. Lear, N. J. Shackleton, A. K. Tripati, and B. S. Wade ( 2006 ), The heartbeat of the Oligocene climate system, Science, 314, 1894 – 1898, doi: 10.1126/science.1133822.en_US
dc.identifier.citedreferencePälike, H., H. Nishi, M. Lyle, I. Raffi, A. Klaus, K. Gamage, and the Expedition 320/321 Scientists ( 2009 ), Pacific Equatorial Age Transect, IODP Prel. Rept., 320, doi: 10.2204/iodp.pr.320.2009.en_US
dc.identifier.citedreferencePälike, H., et al. ( 2012 ), A Cenozoic record of the equatorial Pacific carbonate compensation depth, Nature, 488, 609 – 613, doi: 10.1038/nature11360.en_US
dc.identifier.citedreferenceParés, J. M., and T. C. Moore ( 2005 ), New evidence for the Hawaiian hotspot plume motion since the Eocene, Earth Planet. Sci. Lett., 237, 951 – 959.en_US
dc.identifier.citedreferencePaytan, A., and E. M. Griffith ( 2007 ), Marine barite: Recorder of variations in ocean export productivity, Deep Sea Res., Part II, 54, 687 – 705, doi: 10.1016/j.dsr2.2007.01.007.en_US
dc.identifier.citedreferencePearson, P. N., G. L. Foster, and B. S. Wade ( 2009 ), Atmospheric carbon dioxide through the Eocene–Oligocene climate transition, Nature, 461, 1110 – 1113, doi: 10.1038/nature08447.en_US
dc.identifier.citedreferencePearson, P. N. P., I. A. McMillan, B. S. Wade, T. Dunkley Jones, H. K. Coxall, P. R. Bown, and C. H. Lear ( 2008 ), Extinction and environmental change across the Eocene‐Oligocene boundary in Tanzania, Geology, 36 ( 2 ), 179 – 182.en_US
dc.identifier.citedreferencePlancq, J., E. Mattioli, B. Pittet, L. Simon, and V. Grossi ( 2014 ), Productivity and sea‐surface temperature changes recorded during the late Eocene–early Oligocene at DSDP Site 511 (South Atlantic), Palaeogeogr. Palaeoclimatol. Palaeoecol., 407, 34 – 44.en_US
dc.identifier.citedreferencePoore, R. Z., and R. K. Matthews ( 1984 ), Late Eocene–Oligocene oxygen and carbon isotope record from South Atlantic Ocean, Deep Sea Drilling Project Site 522, in Initial Reports DSDP, vol. 73, edited by K. J. Hsü et al., pp. 725 – 735, U.S. Government Printing Office, Washington, D. C.en_US
dc.identifier.citedreferenceRabosky, D. L., and U. Sorhannus ( 2009 ), Diversity dynamics of marine planktonic diatoms across the Cenozoic, Nature, 457, 183 – 186, doi: 10.1038/nature07435.en_US
dc.identifier.citedreferenceRavizza, G., and F. Paquay ( 2008 ), Os isotope chemostratigraphy applied to organic‐rich marine sediments from the Eocene‐Oligocene transition on the West African margin (ODP Site 959), Paleoceanography, 23, PA2204, doi: 10.1029/2007PA001460.en_US
dc.identifier.citedreferenceSalamy, K. A., and J. C. Zachos ( 1999 ), Latest Eocene‐Early Oligocene climate change and Southern Ocean fertility: Inferences from sediment accumulation and stable isotope data, Palaeogeogr. Palaeoclimatol. Palaeoecol., 145, 61 – 77, doi: 10.1016/S0031‐0182(98)00093‐5.en_US
dc.identifier.citedreferenceSarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne ( 2004 ), High‐latitude controls of thermocline nutrients and low latitude biological productivity, Nature, 427, 56 – 60.en_US
dc.identifier.citedreferenceScher, H. D., and E. E. Martin ( 2004 ), Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes, Earth Planet. Sci. Lett., 228, 391 – 405.en_US
dc.identifier.citedreferenceScher, H. D., and E. E. Martin ( 2006 ), Timing and climatic consequences of the opening of the Drake Passage, Science, 312, 428 – 430.en_US
dc.identifier.citedreferenceSchrader, H. J., and R. Gersonde ( 1978 ), Diatoms and silicoflagellates, in Micropaleontological Counting Methods and Techniques: An Exercise of an Eight Metres Section of the Lower Pliocene of Cap Rossello Sicily, edited by W. J. Zachariasse et al., Micropaleontol. Bull., 17, pp. 129 – 176, Utrecht.en_US
dc.identifier.citedreferenceSchumacher, S., and D. Lazarus ( 2004 ), Regional differences in pelagic productivity in the late Eocene to early Oligocene—A comparison of southern high latitudes and lower latitudes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 214, 243 – 263.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.