Show simple item record

Sensitivity analysis of coexistence in ecological communities: theory and application

dc.contributor.authorBarabás, Györgyen_US
dc.contributor.authorPásztor, Lizen_US
dc.contributor.authorMeszéna, Gézaen_US
dc.contributor.authorOstling, Annetteen_US
dc.date.accessioned2014-12-09T16:53:45Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-12-09T16:53:45Z
dc.date.issued2014-12en_US
dc.identifier.citationBarabás, György ; Pásztor, Liz ; Meszéna, Géza ; Ostling, Annette (2014). "Sensitivity analysis of coexistence in ecological communities: theory and application." Ecology Letters 17(12): 1479-1494.en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109599
dc.description.abstractSensitivity analysis, the study of how ecological variables of interest respond to changes in external conditions, is a theoretically well‐developed and widely applied approach in population ecology. Though the application of sensitivity analysis to predicting the response of species‐rich communities to disturbances also has a long history, derivation of a mathematical framework for understanding the factors leading to robust coexistence has only been a recent undertaking. Here we suggest that this development opens up a new perspective, providing advances ranging from the applied to the theoretical. First, it yields a framework to be applied in specific cases for assessing the extinction risk of community modules in the face of environmental change. Second, it can be used to determine trait combinations allowing for coexistence that is robust to environmental variation, and limits to diversity in the presence of environmental variation, for specific community types. Third, it offers general insights into the nature of communities that are robust to environmental variation. We apply recent community‐level extensions of mathematical sensitivity analysis to example models for illustration. We discuss the advantages and limitations of the method, and some of the empirical questions the theoretical framework could help answer.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherOxford University Pressen_US
dc.subject.otherRobustnessen_US
dc.subject.otherModel Analysisen_US
dc.subject.otherCoexistenceen_US
dc.subject.otherNiche Theoryen_US
dc.titleSensitivity analysis of coexistence in ecological communities: theory and applicationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109599/1/ele12350.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109599/2/ele12350-sup-0001-AppendixS1.pdf
dc.identifier.doi10.1111/ele.12350en_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceMcIntire, E. J. B. & Fajardo, A ( 2014 ). Facilitation as a ubiquitous driver of biodiversity. New Phytol., 201, 403 – 416.en_US
dc.identifier.citedreferenceMacArthur, R. H. & Levins, R. ( 1967 ). Limiting similarity, convergence, and divergence of coexisting species. Am. Nat., 101, 377 – 385.en_US
dc.identifier.citedreferenceMay, R. M. ( 1973 ). Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.en_US
dc.identifier.citedreferenceMeszéna, G., Gyllenberg, M., Pásztor, L. & Metz, J. A. J. ( 2006 ). Competitive exclusion and limiting similarity: a unified theory. Theor. Popul. Biol., 69, 68 – 87.en_US
dc.identifier.citedreferenceMichod, R. ( 1979 ). Evolution of life histories in response to age‐specific mortality factors. Am. Nat., 113, 531 – 550.en_US
dc.identifier.citedreferenceMuller‐Landau, H. C. ( 2010 ). The tolerance‐fecundity trade‐off and the maintenance of diversity in seed size. Proc. Natl. Acad. Sci. USA, 107, 4242 – 4247.en_US
dc.identifier.citedreferenceNeubert, M. G. & Caswell, H. ( 1997 ). Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology, 78, 653 – 665.en_US
dc.identifier.citedreferenceNoon, B. R. & McKelvey, K. S. ( 1996 ). Management of the spotted owl: a case history in conservation biology. Annu. Rev. Ecol. Syst., 27, 135 – 162.en_US
dc.identifier.citedreferenceNovak, M., Wootton, J. T., Doak, D. F., Emmerson, M., Estes, J. A. & Tinker, M. T. ( 2011 ). Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology, 92, 836 – 846.en_US
dc.identifier.citedreferencePásztor, L., Meszéna, G. & Kisdi, É. ( 1996 ). R 0 or r: a matter of taste ? J. Evol. Biol., 9, 511 – 518.en_US
dc.identifier.citedreferenceSeamans, M. E., Gutiérrez, R. J., May, C. A. & Peery, M. Z. ( 1999 ). Demography of two Mexican spotted owl populations. Conserv. Biol., 13, 744 – 754.en_US
dc.identifier.citedreferenceSilvertown, J., Franco, M. & Menges, E. ( 1993 ). Interpretation of elasticity matrices as an aid to management of plant populations of conservation. Conserv. Biol., 10, 591 – 597.en_US
dc.identifier.citedreferenceStouffer, D. B. & Bascompte, J. ( 2011 ). Compartmentalization increases food‐web persistence. Proc. Natl. Acad. Sci. USA, 108, 3648 – 3652.en_US
dc.identifier.citedreferenceSzabó, P. & Meszéna, G. ( 2006 ). Limiting similarity revisited. Oikos, 112, 612 – 619.en_US
dc.identifier.citedreferenceSzilágyi, A. & Meszéna, G. ( 2009a ). Limiting similarity and niche theory for structured populations. J. Theor. Biol., 258, 27 – 37.en_US
dc.identifier.citedreferenceSzilágyi, A. & Meszéna, G. ( 2009b ). Two‐patch model of spatial niche segregation. Evol. Ecol., 23, 187 – 205.en_US
dc.identifier.citedreferenceSzilágyi, A. & Meszéna, G. ( 2010 ). Coexistence in a fluctuating environment by the effect of relative nonlinearity: a minimal model. J. Theor. Biol., 267, 502 – 512.en_US
dc.identifier.citedreferenceTilman, D. ( 1982 ). Resource Competition and Community Structure. Princeton, New York.en_US
dc.identifier.citedreferenceVandermeer, J. H. ( 1975 ). Interspecific competition: a new approach to the classical theory. Science, 188, 253 – 255.en_US
dc.identifier.citedreferenceVerdy, A. & Caswell, H. ( 2008 ). Sensitivity analysis of reactive ecological dynamics. Bull. Math. Biol., 70, 1634 – 1659.en_US
dc.identifier.citedreferenceYeakel, J. D., Stiefs, D., Novak, M. & Gross, T. ( 2011 ). Generalized modeling of ecological population dynamics. Theor. Ecol., 4, 179 – 194.en_US
dc.identifier.citedreferenceYodzis, P. ( 1988 ). The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology, 69, 508 – 515.en_US
dc.identifier.citedreferenceYodzis, P. ( 2000 ). Diffuse effects in food webs. Ecology, 81, 261 – 266.en_US
dc.identifier.citedreferenceAbrams, P. A. ( 1984 ). Variability in resource consumption rates and the coexistence of competing species. Theor. Popul. Biol., 25, 106 – 124.en_US
dc.identifier.citedreferenceAbrams, P. A. ( 2001 ). The effect of density‐independent mortality on the coexistence of exploitative competitors for renewing resources. Am. Nat., 158, 459 – 470.en_US
dc.identifier.citedreferenceAbrams, P. A. ( 2004 ). When does periodic variation in resource growth allow robust coexistence of competing consumer species? Ecology, 85, 372 – 382.en_US
dc.identifier.citedreferenceAbrams, P. A. & Holt, R. D. ( 2002 ). The impact of consumer‐resource cycles on the coexistence of competing consumers. Theor. Popul. Biol., 62, 281 – 295.en_US
dc.identifier.citedreferenceAbrams, P. A. & Nakajima, M. ( 2007 ). Does competition between resources change the competition between their consumers to mutualism? variations on two themes by vandermeer. Am. Nat., 170, 744 – 757.en_US
dc.identifier.citedreferenceAbrams, P. A., Brassil, C. E. & Holt, R. D. ( 2003 ). Dynamics and responses to mortality rates ofcompeting predators undergoing predator‐prey cycles. Theor. Popul. Biol., 64, 163 – 176.en_US
dc.identifier.citedreferenceAdamson, M. W. & Morozov, A. ( 2013 ). When can we trust our model predictions? Unearthing structural sensitivity in biological systems. Proc. Biol. Sci., 469 (2149), 20120500.en_US
dc.identifier.citedreferenceAdler, P. B., Ellner, S. P. & Levine, J. M. ( 2010 ). Coexistence of perennial plants: an embarrassment of niches. Ecol. Lett., 13, 1019 – 1029.en_US
dc.identifier.citedreferenceAlexandrou, M. A., Oliveira, C., Maillard, M., McGill, R. A. R., Newton, J., Creer, S. & Taylor, M. I. ( 2011 ). Competition and phylogeny determine community structure in Müllerian co‐mimics. Nature, 469, 84 – 88.en_US
dc.identifier.citedreferenceAllesina, S. & Pascual, M. ( 2009 ). Googling food webs: can an eigenvector measure species' importance for coextinctions? PLoS Comput. Biol., 5, e10000494.en_US
dc.identifier.citedreferenceArmstrong, R. ( 1976 ). Fugitive species: experiments with fungi and some theoretical considerations. Ecology, 57, 953 – 963.en_US
dc.identifier.citedreferenceArmstrong, R. & McGehee, R. ( 1980 ). Competitive exclusion. Am. Nat., 15, 151 – 170.en_US
dc.identifier.citedreferenceAufderheide, H., Rudolf, L., Gross, T. & Lafferty, K. D. ( 2013 ). How to predict community responses to perturbations in the face of imperfect knowledge and network complexity. Proc. Biol. Sci., 280, 2013 – 2355.en_US
dc.identifier.citedreferenceBarabás, G. & Meszéna, G. ( 2009 ). When the exception becomes the rule: the disappearance of limiting similarity in the Lotka–Volterra model. J. Theor. Biol., 258, 89 – 94.en_US
dc.identifier.citedreferenceBarabás, G. & Ostling, A. ( 2013 ). Community robustness in discrete‐time periodic environments. Ecol. Complex., 15, 122 – 130.en_US
dc.identifier.citedreferenceBarabás, G., Meszéna, G. & Ostling, A. ( 2012a ). Community robustness and limiting similarity in periodic environments. Theor. Ecol., 5, 265 – 282.en_US
dc.identifier.citedreferenceBarabás, G., Pigolotti, S., Gyllenberg, M., Dieckmann, U. & Meszéna, G. ( 2012b ). Continuous coexistence or discrete species? A new review of an old question. Evol. Ecol. Res., 14, 523 – 554.en_US
dc.identifier.citedreferenceBarabás, G., D'Andrea, R. & Ostling, A. ( 2013 ). Species packing in nonsmooth competition models. Theor. Ecol., 6, 1 – 19.en_US
dc.identifier.citedreferenceBarabás, G., Meszéna, G. & Ostling, A. ( 2014 ). Fixed point sensitivity analysis of interacting structured populations. Theor. Popul. Biol., 92, 97 – 106.en_US
dc.identifier.citedreferenceBender, E. A., Case, T. J. & Gilpin, M. E. ( 1984 ). Perturbation experiments in community ecology: Theory and practice. Ecology, 65, 1 – 13.en_US
dc.identifier.citedreferenceBirch, L. C. ( 1953 ). Experimental background to the study of the distribution and abundance of insects. I. The influence of temperature, moisture, and food on the innate capacity for increase of three grain beetles. Ecology, 34, 698 – 711.en_US
dc.identifier.citedreferenceBruno, J. F., Stachowitz, J. J. & Bertness, M. D. ( 2003 ). Inclusion of facilitation into ecological theory. Trends Ecol. Evol., 18, 119 – 125.en_US
dc.identifier.citedreferenceCase, T. J. ( 2000 ). An Illustrated Guide to Theoretical Ecology. Oxford University Press, New York.en_US
dc.identifier.citedreferenceCaswell, H. ( 1982 ). Optimal life histories and the age‐specific costs of reproduction. J. Theor. Biol., 98, 519 – 529.en_US
dc.identifier.citedreferenceCaswell, H. ( 1984 ). Optimal life histories and age‐specific costs of reproduction:two extensions. J. Theor. Biol., 107, 169 – 172.en_US
dc.identifier.citedreferenceCaswell, H. ( 2001 ). Matrix population models: Construction, analysis and interpretation. 2nd edition. Sinauer Associates.en_US
dc.identifier.citedreferenceCaswell, H. ( 2008 ). Perturbation analysis of nonlinear matrix population models. Demographic Research, 18, 59 – 115.en_US
dc.identifier.citedreferenceCaswell, H. ( 2011 ). Matrix models and sensitivity analysis of populations classified by age and stage: a vec‐permutation matrix approach. Theor. Ecol., 5, 403 – 417.en_US
dc.identifier.citedreferenceCerfonteyn, M. E., Le Roux, P. C., Van Vuuren, B. J. & Born, C. ( 2011 ). Cryptic spatial aggregation of the cushion plant Azorella selago (Apiaceae) revealed by a multilocus molecular approach suggests frequent intraspecific facilitation under sub‐Antarctic conditions. Am. J. Bot., 98, 909 – 914.en_US
dc.identifier.citedreferenceCharlesworth, B. & Leon, J. A. ( 1976 ). The relation of reproductive effort to age. Am. Nat., 110, 449 – 459.en_US
dc.identifier.citedreferenceChesson, P. ( 1994 ). Multispecies competition in variable environments. Theor. Popul. Biol., 45, 227 – 276.en_US
dc.identifier.citedreferenceChesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 31, 343 – 366.en_US
dc.identifier.citedreferenceChesson, P. & Warner, R. R. ( 1981 ). Environmental variability promotes coexistence in lottery competitive systems. Am. Nat., 117, 923 – 943.en_US
dc.identifier.citedreferenceCordoleani, F., Nerini, D., Gauduchon, M., Morozov, A. & Poggiale, J‐C. ( 2011 ). Structural sensitivity of biological models revisited. J. Theor. Biol., 283, 82 – 91.en_US
dc.identifier.citedreferenceCrouse, D. T., Crowder, L. B. & Caswell, H. ( 1987 ). A stage‐based population model for loggerhead sea turtles and implications for conservation. Ecology, 68, 1412 – 1423.en_US
dc.identifier.citedreferenceCrowley, P. H. & Cox, J. J. ( 2011 ). Intraguild mutualism. Trends Ecol. Evol., 26, 627 – 633.en_US
dc.identifier.citedreferenceD'Andrea, R., Barabás, G. & Ostling, A. ( 2013 ). Revising the tolerance‐fecundity trade‐off; or, on the consequences of discontinuous resource use for limiting similarity, species diversity, and trait dispersion. Am. Nat., 5, 403 – 417.en_US
dc.identifier.citedreferenceDambacher, J. M., Li, H. W. & Rossignol, P. A. ( 2002 ). Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology, 83, 1372 – 1385.en_US
dc.identifier.citedreferenceEbenman, B. & Jonsson, T. ( 2005 ). Using community viability analysis to identify fragile systems and keystone species. Trends Ecol. Evol., 20, 568 – 575.en_US
dc.identifier.citedreferenceEbenman, B., Law, R. & Borrvall, C. ( 2004 ). Community viability analysis: the response of ecological communities to species loss. Ecology, 85, 2591 – 2600.en_US
dc.identifier.citedreferenceElias, M., Gompert, Z., Jiggins, C. & Willmott, K. ( 2008 ). Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLOS Biology, DOI: 10.1371/journal.pbio.0060300.en_US
dc.identifier.citedreferenceFujiwara, M. & Caswell, H. ( 2001 ). Demography of the endangered North Atlantic right whale. Nature, 414, 537 – 541.en_US
dc.identifier.citedreferenceGleeson, S. K. ( 1984 ). Medawar's theory of senescence. J. Theor. Biol., 108, 475 – 479.en_US
dc.identifier.citedreferenceGross, K. ( 2008 ). Positive interactions among competitors can produce species‐rich communities. Ecol. Lett., 11, 929 – 936.en_US
dc.identifier.citedreferenceGross, T., Edwards, A. M. & Feudel, U. ( 2009 ). The invisible niche: weakly density‐dependent mortality and the coexistence of species. J. Theor. Biol., 258, 148 – 155.en_US
dc.identifier.citedreferenceGuimerá, R., Stouffer, D. B., Sales‐Pardo, M., Leicht, E. A., Newman, M. E. J. & Amaral, L. A. N. ( 2010 ). Origin of compartmentalization in food webs. Ecology, 91, 2941 – 2951.en_US
dc.identifier.citedreferenceHamilton, W. D. ( 1966 ). The moulding of senescence by natural selection. J. Theor. Biol., 12, 12 – 45.en_US
dc.identifier.citedreferenceHochberg, M. E., Thomas, J. A. & Elmes, G. W. ( 1992 ). A modelling study of the population dynamics of a large blue butterfly, Maculinea rebeli, a parasite of red ant nests. Journal of Animal Ecology, 61, 397 – 409.en_US
dc.identifier.citedreferenceHunter, C. M., Caswell, H., Runge, M. C., Regehr, E. V., Amstrup, S. C. & Stirling, I. ( 2010 ). Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology, 91, 2883 – 2898.en_US
dc.identifier.citedreferenceKrause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. ( 2003 ). Compartments revealed in food‐web structure. Nature, 426, 282 – 285.en_US
dc.identifier.citedreferencede Kroon, H., van Groenendael, J. & Ehrlén, J. ( 2000 ). Elasticities: a review of methods and model limitations. Ecology, 81, 607 – 618.en_US
dc.identifier.citedreferenceKuznetsov, Y. ( 2004 ). Elements of Applied Bifurcation Theory, 3rd edition. Springer Verlag, Berlin.en_US
dc.identifier.citedreferenceLevin, S. A. ( 1970 ). Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat., 104, 413 – 423.en_US
dc.identifier.citedreferenceLevine, J. M. & Rees, M. ( 2004 ). Effects of temporal variability on rare plant persistence in annual systems. Am. Nat., 164, 350 – 363.en_US
dc.identifier.citedreferenceLevins, R. ( 1968 ). Evolution in Changing Environments. Princeton University Press, Princeton.en_US
dc.identifier.citedreferenceLevins, R. ( 1974 ). Qualitative analysis of partially specified systems. Ann. NY Acad. Sci., 231, 123 – 138.en_US
dc.identifier.citedreferenceLonnberg, K. & Eriksson, O. ( 2013 ). Rules of the seed size game: contests between large‐seeded and small‐seeded species. Oikos, 122, 1080 – 1084.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.