Show simple item record

Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?

dc.contributor.authorCierpicki, Tomaszen_US
dc.contributor.authorGrembecka, Jolantaen_US
dc.date.accessioned2015-01-07T15:24:40Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationCierpicki, Tomasz; Grembecka, Jolanta (2015). "Targeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?." Immunological Reviews (1): 279-301.en_US
dc.identifier.issn0105-2896en_US
dc.identifier.issn1600-065Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110054
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHematologic Malignanciesen_US
dc.subject.otherProtein–Protein Interactionsen_US
dc.subject.otherDrug Discoveryen_US
dc.titleTargeting protein–protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110054/1/imr12244.pdf
dc.identifier.doi10.1111/imr.12244en_US
dc.identifier.sourceImmunological Reviewsen_US
dc.identifier.citedreferenceBoldi AM. Libraries from natural product‐like scaffolds. Curr Opin Chem Biol 2004; 8: 281 – 286.en_US
dc.identifier.citedreferenceFishburn CS. Translational research: the changing landscape of drug discovery. Drug Discov Today 2013; 18: 487 – 494.en_US
dc.identifier.citedreferenceSchultz‐Kirkegaard H, Valentin F. Academic drug discovery centres: the economic and organisational sustainability of an emerging model. Drug Discov Today 2014; pii:S1359‐6446(14)00245‐1.en_US
dc.identifier.citedreferenceColes LD, Cloyd JC. The role of academic institutions in the development of drugs for rare and neglected diseases. Clin Pharmacol Ther 2012; 92: 193 – 202.en_US
dc.identifier.citedreferenceWhitty A, Kumaravel G. Between a rock and a hard place? Nat Chem Biol 2006; 2: 112 – 118.en_US
dc.identifier.citedreferenceArkin MR, Wells JA. Small‐molecule inhibitors of protein‐protein interactions: progressing towards the dream. Nat Rev Drug Discov 2004; 3: 301 – 317.en_US
dc.identifier.citedreferenceBerg T. Small‐molecule inhibitors of protein‐protein interactions. Curr Opin Drug Discov Devel 2008; 11: 666 – 674.en_US
dc.identifier.citedreferenceLipinski CA. Lead‐ and drug‐like compounds: the rule‐of‐five revolution. Drug Discov Today Technol 2004; 1: 337 – 341.en_US
dc.identifier.citedreferenceHuber W, Mueller F. Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 2006; 12: 3999 – 4021.en_US
dc.identifier.citedreferenceFrank AO, et al. Discovery of a potent inhibitor of replication protein a protein‐protein interactions using a fragment‐linking approach. J Med Chem 2013; 56: 9242 – 9250.en_US
dc.identifier.citedreferenceSun Q, et al. Discovery of small molecules that bind to K‐Ras and inhibit Sos‐mediated activation. Angew Chem Int Ed Engl 2012; 51: 6140 – 6143.en_US
dc.identifier.citedreferenceVu B, et al. Discovery of RG7112: a small‐molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 2013; 4: 466 – 469.en_US
dc.identifier.citedreferenceEmami KH, et al. A small molecule inhibitor of beta‐catenin/CREB‐binding protein transcription [corrected]. Proc Natl Acad Sci USA 2004; 101: 12682 – 12687.en_US
dc.identifier.citedreferenceCondon SM, et al. Birinapant, a smac‐mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J Med Chem 2014; 57: 3666 – 3677.en_US
dc.identifier.citedreferenceHoughton PJ, et al. Initial testing (stage 1) of LCL161, a SMAC mimetic, by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2012; 58: 636 – 639.en_US
dc.identifier.citedreferenceGandhi L, et al. Phase I study of Navitoclax (ABT‐263), a novel Bcl‐2 family inhibitor, in patients with small‐cell lung cancer and other solid tumors. J Clin Oncol 2011; 29: 909 – 916.en_US
dc.identifier.citedreferenceSchimmer AD, et al. A phase I study of the pan bcl‐2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14: 8295 – 8301.en_US
dc.identifier.citedreferenceBasse MJ, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein‐protein interactions. Nucleic Acids Res 2013; 41: D824 – D827.en_US
dc.identifier.citedreferenceMoore AS, Kearns PR, Knapper S, Pearson AD, Zwaan CM. Novel therapies for children with acute myeloid leukaemia. Leukemia 2013; 27: 1451 – 1460.en_US
dc.identifier.citedreferenceNapper AD, Watson VG. Targeted drug discovery for pediatric leukemia. Front Oncol 2013; 3: 170.en_US
dc.identifier.citedreferenceTasian SK, Pollard JA, Aplenc R. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia. Front Oncol 2014; 4: 55.en_US
dc.identifier.citedreferenceBrown P, Hunger SP, Smith FO, Carroll WL, Reaman GH. Novel targeted drug therapies for the treatment of childhood acute leukemia. Expert Rev Hematol 2009; 2: 145.en_US
dc.identifier.citedreferenceNiewerth D, Dingjan I, Cloos J, Jansen G, Kaspers G. Proteasome inhibitors in acute leukemia. Expert Rev Anticancer Ther 2013; 13: 327 – 337.en_US
dc.identifier.citedreferenceFandy TE. Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases. Curr Med Chem 2009; 16: 2075 – 2085.en_US
dc.identifier.citedreferenceGiannini G, Cabri W, Fattorusso C, Rodriquez M. Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 2012; 4: 1439 – 1460.en_US
dc.identifier.citedreferenceDaigle SR, et al. Selective killing of mixed lineage leukemia cells by a potent small‐molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53 – 65.en_US
dc.identifier.citedreferenceFigueroa ME, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553 – 567.en_US
dc.identifier.citedreferenceRodriguez‐Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17: 330 – 339.en_US
dc.identifier.citedreferenceMeldi KM, Figueroa ME. Epigenetic deregulation in myeloid malignancies. Transl Res 2014; pii:S1931‐5244(14)00142‐X.en_US
dc.identifier.citedreferenceOfran Y, Rowe JM. Genetic profiling in acute myeloid leukaemia–where are we and what is its role in patient management. Br J Haematol 2013; 160: 303 – 320.en_US
dc.identifier.citedreferenceVidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell 2011; 144: 986 – 998.en_US
dc.identifier.citedreferenceIdeker T, Sharan R. Protein networks in disease. Genome Res 2008; 18: 644 – 652.en_US
dc.identifier.citedreferenceGavin AC, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002; 415: 141 – 147.en_US
dc.identifier.citedreferenceKar G, Gursoy A, Keskin O. Human cancer protein‐protein interaction network: a structural perspective. PLoS Comput Biol 2009; 5: e1000601.en_US
dc.identifier.citedreferenceRyan DP, Matthews JM. Protein‐protein interactions in human disease. Curr Opin Struct Biol 2005; 15: 441 – 446.en_US
dc.identifier.citedreferenceZinzalla G, Thurston DE. Targeting protein‐protein interactions for therapeutic intervention: a challenge for the future. Future Med Chem 2009; 1: 65 – 93.en_US
dc.identifier.citedreferenceArkin M. Protein‐protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 2005; 9: 317 – 324.en_US
dc.identifier.citedreferenceMorelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein‐protein interaction inhibition (2P2I). Curr Opin Chem Biol 2011; 15: 475 – 481.en_US
dc.identifier.citedreferencePeloquin GL, Chen YB, Fathi AT. The evolving landscape in the therapy of acute myeloid leukemia. Protein Cell 2013; 4: 735 – 746.en_US
dc.identifier.citedreferenceNero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 2014; 14: 248 – 262.en_US
dc.identifier.citedreferenceWells JA, McClendon CL. Reaching for high‐hanging fruit in drug discovery at protein‐protein interfaces. Nature 2007; 450: 1001 – 1009.en_US
dc.identifier.citedreferenceFry DC, Vassilev LT. Targeting protein‐protein interactions for cancer therapy. J Mol Med (Berl) 2005; 83: 955 – 963.en_US
dc.identifier.citedreferenceArkin MR, Whitty A. The road less traveled: modulating signal transduction enzymes by inhibiting their protein‐protein interactions. Curr Opin Chem Biol 2009; 13: 284 – 290.en_US
dc.identifier.citedreferenceVenkatesan K, et al. An empirical framework for binary interactome mapping. Nat Methods 2009; 6: 83 – 90.en_US
dc.identifier.citedreferenceStumpf MP, et al. Estimating the size of the human interactome. Proc Natl Acad Sci USA 2008; 105: 6959 – 6964.en_US
dc.identifier.citedreferenceZhang L, Daly RJ. Targeting the human kinome for cancer therapy: current perspectives. Crit Rev Oncog 2012; 17: 233 – 246.en_US
dc.identifier.citedreferenceYokoyama A, Somervaille TC, Smith KS, Rozenblatt‐Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL‐associated leukemogenesis. Cell 2005; 123: 207 – 218.en_US
dc.identifier.citedreferenceGambacorti‐Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia‐chromosome‐positive leukaemias. Lancet Oncol 2003; 4: 75 – 85.en_US
dc.identifier.citedreferenceO'Hare T, Eide CA, Deininger MW. Bcr‐Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007; 110: 2242 – 2249.en_US
dc.identifier.citedreferenceFurman RR, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med 2014; 370: 2352 – 2354.en_US
dc.identifier.citedreferenceYang SH. Molecular basis of drug resistance: epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Tuberc Respir Dis (Seoul) 2013; 75: 188 – 198.en_US
dc.identifier.citedreferenceMa B, Elkayam T, Wolfson H, Nussinov R. Protein‐protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 2003; 100: 5772 – 5777.en_US
dc.identifier.citedreferenceLi X, Keskin O, Ma B, Nussinov R, Liang J. Protein‐protein interactions: hot spots and structurally conserved residues often locate in complemented pockets that pre‐organized in the unbound states: implications for docking. J Mol Biol 2004; 344: 781 – 795.en_US
dc.identifier.citedreferenceKeskin O, Ma B, Nussinov R. Hot regions in protein–protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 2005; 345: 1281 – 1294.en_US
dc.identifier.citedreferenceGuerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320: 369 – 387.en_US
dc.identifier.citedreferenceJung M, et al. Affinity map of bromodomain protein 4 (BRD4) interactions with the histone H4 tail and the small molecule inhibitor JQ1. J Biol Chem 2014; 289: 9304 – 9319.en_US
dc.identifier.citedreferenceJones S, Thornton JM. Principles of protein‐protein interactions. Proc Natl Acad Sci USA 1996; 93: 13 – 20.en_US
dc.identifier.citedreferenceLo Conte L, Chothia C, Janin J. The atomic structure of protein‐protein recognition sites. J Mol Biol 1999; 285: 2177 – 2198.en_US
dc.identifier.citedreferenceTsai CJ, del Sol A, Nussinov R. Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 2008; 378: 1 – 11.en_US
dc.identifier.citedreferenceGoodey NM, Benkovic SJ. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 2008; 4: 474 – 482.en_US
dc.identifier.citedreferenceGorczynski MJ, et al. Allosteric inhibition of the protein‐protein interaction between the leukemia‐associated proteins Runx1 and CBFbeta. Chem Biol 2007; 14: 1186 – 1197.en_US
dc.identifier.citedreferencePetsalaki E, Russell RB. Peptide‐mediated interactions in biological systems: new discoveries and applications. Curr Opin Biotechnol 2008; 19: 344 – 350.en_US
dc.identifier.citedreferenceLondon N, Movshovitz‐Attias D, Schueler‐Furman O. The structural basis of peptide‐protein binding strategies. Structure 2010; 18: 188 – 199.en_US
dc.identifier.citedreferenceWright PE, Dyson HJ. Linking folding and binding. Curr Opin Struct Biol 2009; 19: 31 – 38.en_US
dc.identifier.citedreferenceDemarest SJ, et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 2002; 415: 549 – 553.en_US
dc.identifier.citedreferenceLeach BI, Kuntimaddi A, Schmidt CR, Cierpicki T, Johnson SA, Bushweller JH. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 2013; 21: 176 – 183.en_US
dc.identifier.citedreferenceDunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 2005; 272: 5129 – 5148.en_US
dc.identifier.citedreferenceClackson T, Wells JA. A hot spot of binding energy in a hormone‐receptor interface. Science 1995; 267: 383 – 386.en_US
dc.identifier.citedreferenceBogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol 1998; 280: 1 – 9.en_US
dc.identifier.citedreferenceMa B, Nussinov R. Trp/Met/Phe hot spots in protein‐protein interactions: potential targets in drug design. Curr Top Med Chem 2007; 7: 999 – 1005.en_US
dc.identifier.citedreferenceDeLano WL. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 2002; 12: 14 – 20.en_US
dc.identifier.citedreferenceMoreira IS, Fernandes PA, Ramos MJ. Hot spots – a review of the protein‐protein interface determinant amino‐acid residues. Proteins 2007; 68: 803 – 812.en_US
dc.identifier.citedreferenceZerbe BS, Hall DR, Vajda S, Whitty A, Kozakov D. Relationship between hot spot residues and ligand binding hot spots in protein‐protein interfaces. J Chem Inf Model 2012; 52: 2236 – 2244.en_US
dc.identifier.citedreferenceReichmann D, Rahat O, Albeck S, Meged R, Dym O, Schreiber G. The modular architecture of protein‐protein binding interfaces. Proc Natl Acad Sci USA 2005; 102: 57 – 62.en_US
dc.identifier.citedreferenceKozakov D, et al. Structural conservation of druggable hot spots in protein‐protein interfaces. Proc Natl Acad Sci USA 2011; 108: 13528 – 13533.en_US
dc.identifier.citedreferenceMakley LN, Gestwicki JE. Expanding the number of ‘druggable’ targets: non‐enzymes and protein‐protein interactions. Chem Biol Drug Des 2013; 81: 22 – 32.en_US
dc.identifier.citedreferenceSmith MC, Gestwicki JE. Features of protein‐protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 2012; 14: e16.en_US
dc.identifier.citedreferenceLanzarotti E, Biekofsky RR, Estrin DA, Marti MA, Turjanski AG. Aromatic‐aromatic interactions in proteins: beyond the dimer. J Chem Inf Model 2011; 51: 1623 – 1633.en_US
dc.identifier.citedreferenceVilloutreix BO, Labbe CM, Lagorce D, Laconde G, Sperandio O. A leap into the chemical space of protein‐protein interaction inhibitors. Curr Pharm Des 2012; 18: 4648 – 4667.en_US
dc.identifier.citedreferenceGoh CS, Milburn D, Gerstein M. Conformational changes associated with protein‐protein interactions. Curr Opin Struct Biol 2004; 14: 104 – 109.en_US
dc.identifier.citedreferenceLee EF, et al. Conformational changes in Bcl‐2 pro‐survival proteins determine their capacity to bind ligands. J Biol Chem 2009; 284: 30508 – 30517.en_US
dc.identifier.citedreferenceEyrisch S, Helms V. Transient pockets on protein surfaces involved in protein‐protein interaction. J Med Chem 2007; 50: 3457 – 3464.en_US
dc.identifier.citedreferenceArkin MR, et al. Binding of small molecules to an adaptive protein‐protein interface. Proc Natl Acad Sci USA 2003; 100: 1603 – 1608.en_US
dc.identifier.citedreferenceWidmer H, Jahnke W. Protein NMR in biomedical research. Cell Mol Life Sci 2004; 61: 580 – 599.en_US
dc.identifier.citedreferenceSivanesan D, Rajnarayanan RV, Doherty J, Pattabiraman N. In‐silico screening using flexible ligand binding pockets: a molecular dynamics‐based approach. J Comput Aided Mol Des 2005; 19: 213 – 228.en_US
dc.identifier.citedreferenceCaballero J, Alzate‐Morales JH. Molecular dynamics of protein kinase‐inhibitor complexes: a valid structural information. Curr Pharm Des 2012; 18: 2946 – 2963.en_US
dc.identifier.citedreferenceLexa KW, Carlson HA. Full protein flexibility is essential for proper hot‐spot mapping. J Am Chem Soc 2011; 133: 200 – 202.en_US
dc.identifier.citedreferenceWhite AW, Westwell AD, Brahemi G. Protein‐protein interactions as targets for small‐molecule therapeutics in cancer. Expert Rev Mol Med 2008; 10: e8.en_US
dc.identifier.citedreferenceVitagliano O, Addeo R, D'Angelo V, Indolfi C, Indolfi P, Casale F. The Bcl‐2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches. Expert Rev Hematol 2013; 6: 587 – 597.en_US
dc.identifier.citedreferenceBrinkmann K, Kashkar H. Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell Death Dis 2014; 5: e1098.en_US
dc.identifier.citedreferenceGoard CA, Schimmer AD. An evidence‐based review of obatoclax mesylate in the treatment of hematological malignancies. Core Evid 2013; 8: 15 – 26.en_US
dc.identifier.citedreferenceVogler M, Dinsdale D, Dyer MJ, Cohen GM. Bcl‐2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 2009; 16: 360 – 367.en_US
dc.identifier.citedreferenceShangary S, Wang S. Small‐molecule inhibitors of the MDM2‐p53 protein‐protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 2009; 49: 223 – 241.en_US
dc.identifier.citedreferenceSun D, et al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2‐p53 inhibitor in clinical development. J Med Chem 2014; 57: 1454 – 1472.en_US
dc.identifier.citedreferenceKhoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014; 13: 217 – 236.en_US
dc.identifier.citedreferenceGrembecka J, et al. Menin‐MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277 – 284.en_US
dc.identifier.citedreferenceShi A, et al. Structural insights into inhibition of the bivalent menin‐MLL interaction by small molecules in leukemia. Blood 2012; 120: 4461 – 4469.en_US
dc.identifier.citedreferenceHe S, et al. High‐affinity small‐molecule inhibitors of the menin‐mixed lineage leukemia (MLL) interaction closely mimic a natural protein‐protein interaction. J Med Chem 2014; 57: 1543 – 1556.en_US
dc.identifier.citedreferenceCao F, et al. Targeting MLL1 H3K4 methyltransferase activity in mixed‐lineage leukemia. Mol Cell 2014; 53: 247 – 261.en_US
dc.identifier.citedreferenceSenisterra G, et al. Small‐molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem J 2013; 449: 151 – 159.en_US
dc.identifier.citedreferenceCunningham L, et al. Identification of benzodiazepine Ro5‐3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1‐CBFbeta interaction. Proc Natl Acad Sci USA 2012; 109: 14592 – 14597.en_US
dc.identifier.citedreferenceZuber J, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524 – 528.en_US
dc.identifier.citedreferenceDawson MA, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL‐fusion leukaemia. Nature 2011; 478: 529 – 533.en_US
dc.identifier.citedreferenceDelmore JE, et al. BET bromodomain inhibition as a therapeutic strategy to target c‐Myc. Cell 2011; 146: 904 – 917.en_US
dc.identifier.citedreferenceCerchietti LC, et al. A small‐molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17: 400 – 411.en_US
dc.identifier.citedreferenceMirguet O, et al. Discovery of epigenetic regulator I‐BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J Med Chem 2013; 56: 7501 – 7515.en_US
dc.identifier.citedreferenceMarschalek R. Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 2011; 152: 141 – 154.en_US
dc.identifier.citedreferenceTomizawa D, et al. Outcome of risk‐based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007; 21: 2258 – 2263.en_US
dc.identifier.citedreferencePopovic R, Zeleznik‐Le NJ. MLL: how complex does it get? J Cell Biochem 2005; 95: 234 – 242.en_US
dc.identifier.citedreferenceHess JL. MLL: a histone methyltransferase disrupted in leukemia. Trends Mol Med 2004; 10: 500 – 507.en_US
dc.identifier.citedreferenceKrivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem‐cell development. Nat Rev Cancer 2007; 7: 823 – 833.en_US
dc.identifier.citedreferenceSlany RK. The molecular biology of mixed lineage leukemia. Haematologica 2009; 94: 984 – 993.en_US
dc.identifier.citedreferenceSlany RK. When epigenetics kills: MLL fusion proteins in leukemia. Hematol Oncol 2005; 23: 1 – 9.en_US
dc.identifier.citedreferenceDimartino JF, Cleary ML. Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 1999; 106: 614 – 626.en_US
dc.identifier.citedreferenceDaigle SR, et al. Potent inhibition of DOT1L as treatment of MLL‐fusion leukemia. Blood 2013; 122: 1017 – 1025.en_US
dc.identifier.citedreferenceKnapper S. FLT3 inhibition in acute myeloid leukaemia. Br J Haematol 2007; 138: 687 – 699.en_US
dc.identifier.citedreferenceWang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008; 455: 1205 – 1209.en_US
dc.identifier.citedreferencePlacke T, et al. Requirement for CDK6 in MLL‐rearranged acute myeloid leukemia. Blood 2014; 124: 13 – 23.en_US
dc.identifier.citedreferenceAyton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695 – 5707.en_US
dc.identifier.citedreferenceDou Y, et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005; 121: 873 – 885.en_US
dc.identifier.citedreferenceMilne TA, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107 – 1117.en_US
dc.identifier.citedreferenceThiel AT, et al. MLL‐AF9‐induced leukemogenesis requires coexpression of the wild‐type Mll allele. Cancer Cell 2010; 17: 148 – 159.en_US
dc.identifier.citedreferenceDou Y, et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006; 13: 713 – 719.en_US
dc.identifier.citedreferenceSong JJ, Kingston RE. WDR5 interacts with mixed lineage leukemia (MLL) protein via the histone H3‐binding pocket. J Biol Chem 2008; 283: 35258 – 35264.en_US
dc.identifier.citedreferenceYokoyama A, Cleary ML. Menin critically links MLL proteins with LEDGF on cancer‐associated target genes. Cancer Cell 2008; 14: 36 – 46.en_US
dc.identifier.citedreferenceCierpicki T, Grembecka J. Challenges and opportunities in targeting the menin‐MLL interaction. Future Med Chem 2014; 6: 447 – 462.en_US
dc.identifier.citedreferenceGrembecka J, Belcher AM, Hartley T, Cierpicki T. Molecular basis of the mixed lineage leukemia‐menin interaction: implications for targeting mixed lineage leukemias. J Biol Chem 2010; 285: 40690 – 40698.en_US
dc.identifier.citedreferenceMurai MJ, Chruszcz M, Reddy G, Grembecka J, Cierpicki T. Crystal structure of menin reveals binding site for mixed lineage leukemia (MLL) protein. J Biol Chem 2011; 286: 31742 – 31748.en_US
dc.identifier.citedreferenceHuang J, et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 2012; 482: 542 – 546.en_US
dc.identifier.citedreferenceZhou H, et al. Structure‐based design of high‐affinity macrocyclic peptidomimetics to block the menin‐mixed lineage leukemia 1 (MLL1) protein‐protein interaction. J Med Chem 2013; 56: 1113 – 1123.en_US
dc.identifier.citedreferencePatel A, Dharmarajan V, Cosgrove MS. Structure of WDR5 bound to mixed lineage leukemia protein‐1 peptide. J Biol Chem 2008; 283: 32158 – 32161.en_US
dc.identifier.citedreferenceKaratas H, Townsend EC, Bernard D, Dou Y, Wang S. Analysis of the binding of mixed lineage leukemia 1 (MLL1) and histone 3 peptides to WD repeat domain 5 (WDR5) for the design of inhibitors of the MLL1‐WDR5 interaction. J Med Chem 2010; 53: 5179 – 5185.en_US
dc.identifier.citedreferenceBolshan Y, et al. Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5‐MLL Interaction. ACS Med Chem Lett 2013; 4: 353 – 357.en_US
dc.identifier.citedreferenceKaratas H, et al. High‐affinity, small‐molecule peptidomimetic inhibitors of MLL1/WDR5 protein‐protein interaction. J Am Chem Soc 2013; 135: 669 – 682.en_US
dc.identifier.citedreferenceMcCabe MT, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2‐activating mutations. Nature 2012; 492: 108 – 112.en_US
dc.identifier.citedreferenceKnutson SK, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890 – 896.en_US
dc.identifier.citedreferenceKim W, et al. Targeted disruption of the EZH2‐EED complex inhibits EZH2‐dependent cancer. Nat Chem Biol 2013; 9: 643 – 650.en_US
dc.identifier.citedreferenceLiu P, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041 – 1044.en_US
dc.identifier.citedreferenceCastilla LH, et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked‐in leukemia gene CBFB‐MYH11. Cell 1996; 87: 687 – 696.en_US
dc.identifier.citedreferenceLukasik SM, et al. Altered affinity of CBF beta‐SMMHC for Runx1 explains its role in leukemogenesis. Nat Struct Biol 2002; 9: 674 – 679.en_US
dc.identifier.citedreferenceWarren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia‐associated transcription factors AML1 and CBFbeta. EMBO J 2000; 19: 3004 – 3015.en_US
dc.identifier.citedreferenceTahirov TH, et al. Structural analyses of DNA recognition by the AML1/Runx‐1 Runt domain and its allosteric control by CBFbeta. Cell 2001; 104: 755 – 767.en_US
dc.identifier.citedreferenceTang YY, et al. Energetic and functional contribution of residues in the core binding factor beta (CBFbeta) subunit to heterodimerization with CBFalpha. J Biol Chem 2000; 275: 39579 – 39588.en_US
dc.identifier.citedreferenceBushweller JH, et al. A small molecule inhibitor of the CBFb‐SMMHC/RUNX interaction attenuates inv(16) leukemia in vivo. Blood 2012; 120: 286.en_US
dc.identifier.citedreferenceMarushige K. Activation of chromatin by acetylation of histone side chains. Proc Natl Acad Sci USA 1976; 73: 3937 – 3941.en_US
dc.identifier.citedreferenceFilippakopoulos P, et al. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067 – 1073.en_US
dc.identifier.citedreferenceFilippakopoulos P, Knapp S. Targeting bromo‐domains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 2014; 13: 337 – 356.en_US
dc.identifier.citedreferenceLiu Y, et al. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry 2008; 47: 6403 – 6417.en_US
dc.identifier.citedreferenceFilippakopoulos P, et al. Histone recognition and large‐scale structural analysis of the human bromodomain family. Cell 2012; 149: 214 – 231.en_US
dc.identifier.citedreferenceNicodeme E, et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468: 1119 – 1123.en_US
dc.identifier.citedreferenceYe BH. BCL‐6 in the pathogenesis of non‐Hodgkin's lymphoma. Cancer Invest 2000; 18: 356 – 365.en_US
dc.identifier.citedreferenceCerchietti LC, et al. A peptomimetic inhibitor of BCL6 with potent antilymphoma effects in vitro and in vivo. Blood 2009; 113: 3397 – 3405.en_US
dc.identifier.citedreferencePolo JM, et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B‐cell lymphoma cells. Nat Med 2004; 10: 1329 – 1335.en_US
dc.identifier.citedreferenceGhetu AF, Corcoran CM, Cerchietti L, Bardwell VJ, Melnick A, Prive GG. Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 2008; 29: 384 – 391.en_US
dc.identifier.citedreferenceAhmad KF, et al. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 2003; 12: 1551 – 1564.en_US
dc.identifier.citedreferenceFry DC. Protein‐protein interactions as targets for small molecule drug discovery. Biopolymers 2006; 84: 535 – 552.en_US
dc.identifier.citedreferencePagliaro L, et al. Emerging classes of protein‐protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 2004; 8: 442 – 449.en_US
dc.identifier.citedreferenceToogood PL. Inhibition of protein‐protein association by small molecules: approaches and progress. J Med Chem 2002; 45: 1543 – 1558.en_US
dc.identifier.citedreferenceLoregian A, Palu G. Disruption of protein‐protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204: 750 – 762.en_US
dc.identifier.citedreferenceMoerke NJ, et al. Small‐molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007; 128: 257 – 267.en_US
dc.identifier.citedreferenceInglese J, et al. High‐throughput screening assays for the identification of chemical probes. Nat Chem Biol 2007; 3: 466 – 479.en_US
dc.identifier.citedreferenceGotoh Y, Nagata H, Kase H, Shimonishi M, Ido M. A homogeneous time‐resolved fluorescence‐based high‐throughput screening system for discovery of inhibitors of IKKbeta‐NEMO interaction. Anal Biochem 2010; 405: 19 – 27.en_US
dc.identifier.citedreferenceGlickman JF, et al. A comparison of ALPHAScreen, TR‐FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 2002; 7: 3 – 10.en_US
dc.identifier.citedreferenceBauer RA, Wurst JM, Tan DS. Expanding the range of ‘druggable’ targets with natural product‐based libraries: an academic perspective. Curr Opin Chem Biol 2010; 14: 308 – 314.en_US
dc.identifier.citedreferenceDandapani S, Marcaurelle LA. Grand challenge commentary: accessing new chemical space for ‘undruggable’ targets. Nat Chem Biol 2010; 6: 861 – 863.en_US
dc.identifier.citedreferenceGalloway WR, Isidro‐Llobet A, Spring DR. Diversity‐oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 2010; 1: 80.en_US
dc.identifier.citedreferenceBurke MD, Schreiber SL. A planning strategy for diversity‐oriented synthesis. Angew Chem Int Ed Engl 2004; 43: 46 – 58.en_US
dc.identifier.citedreferenceKoehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov 2005; 4: 206 – 220.en_US
dc.identifier.citedreferenceLarsen MJ, et al. The role of HTS in drug discovery at the University of Michigan. Comb Chem High Throughput Screen 2014; 17: 210 – 230.en_US
dc.identifier.citedreferenceDe Clercq E. The design of drugs for HIV and HCV. Nat Rev Drug Discov 2007; 6: 1001 – 1018.en_US
dc.identifier.citedreferenceSakurai K, Chung HS, Kahne D. Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 2004; 126: 16288 – 16289.en_US
dc.identifier.citedreferenceZhong S, Macias AT, MacKerell AD Jr. Computational identification of inhibitors of protein‐protein interactions. Curr Top Med Chem 2007; 7: 63 – 82.en_US
dc.identifier.citedreferenceFalchi F, Caporuscio F, Recanatini M. Structure‐based design of small‐molecule protein‐protein interaction modulators: the story so far. Future Med Chem 2014; 6: 343 – 357.en_US
dc.identifier.citedreferenceSiddiquee K, et al. Selective chemical probe inhibitor of Stat3, identified through structure‐based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007; 104: 7391 – 7396.en_US
dc.identifier.citedreferenceSong H, Wang R, Wang S, Lin J. A low‐molecular‐weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA 2005; 102: 4700 – 4705.en_US
dc.identifier.citedreferenceRenaud JP, Delsuc MA. Biophysical techniques for ligand screening and drug design. Curr Opin Pharmacol 2009; 9: 622 – 628.en_US
dc.identifier.citedreferenceMurray CW, Rees DC. The rise of fragment‐based drug discovery. Nat Chem 2009; 1: 187 – 192.en_US
dc.identifier.citedreferenceTse C, et al. ABT‐263: a potent and orally bioavailable Bcl‐2 family inhibitor. Cancer Res 2008; 68: 3421 – 3428.en_US
dc.identifier.citedreferenceSchuffenhauer A, et al. Library design for fragment based screening. Curr Top Med Chem 2005; 5: 751 – 762.en_US
dc.identifier.citedreferenceScott DE, Coyne AG, Hudson SA, Abell C. Fragment‐based approaches in drug discovery and chemical biology. Biochemistry 2012; 51: 4990 – 5003.en_US
dc.identifier.citedreferenceKumar A, Voet A, Zhang KY. Fragment based drug design: from experimental to computational approaches. Curr Med Chem 2012; 19: 5128 – 5147.en_US
dc.identifier.citedreferenceOltersdorf T, et al. An inhibitor of Bcl‐2 family proteins induces regression of solid tumours. Nature 2005; 435: 677 – 681.en_US
dc.identifier.citedreferenceWendt MD, et al. Discovery and structure‐activity relationship of antagonists of B‐cell lymphoma 2 family proteins with chemopotentiation activity in vitro and in vivo. J Med Chem 2006; 49: 1165 – 1181.en_US
dc.identifier.citedreferencePark CM, et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B‐cell lymphoma 2 proteins. J Med Chem 2008; 51: 6902 – 6915.en_US
dc.identifier.citedreferenceFriberg A, et al. Discovery of potent myeloid cell leukemia 1 (Mcl‐1) inhibitors using fragment‐based methods and structure‐based design. J Med Chem 2013; 56: 15 – 30.en_US
dc.identifier.citedreferenceHuang JW, et al. Fragment‐based design of small molecule X‐linked inhibitor of apoptosis protein inhibitors. J Med Chem 2008; 51: 7111 – 7118.en_US
dc.identifier.citedreferenceLeach AR, Hann MM. Molecular complexity and fragment‐based drug discovery: ten years on. Curr Opin Chem Biol 2011; 15: 489 – 496.en_US
dc.identifier.citedreferenceMoriniere J, et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 2009; 461: 664 – 668.en_US
dc.identifier.citedreferenceKu B, Liang C, Jung JU, Oh BH. Evidence that inhibition of BAX activation by BCL‐2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 2011; 21: 627 – 641.en_US
dc.identifier.citedreferenceDunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr Opin Struct Biol 2008; 18: 756 – 764.en_US
dc.identifier.citedreferenceChen CY, Tou WI. How to design a drug for the disordered proteins? Drug Discov Today 2013; 18: 910 – 915.en_US
dc.identifier.citedreferenceMuntean AG, Hess JL. The pathogenesis of mixed‐lineage leukemia. Annu Rev Pathol 2012; 7: 283 – 301.en_US
dc.identifier.citedreferencePalermo CM, Bennett CA, Winters AC, Hemenway CS. The AF4‐mimetic peptide, PFWT, induces necrotic cell death in MV4‐11 leukemia cells. Leuk Res 2008; 32: 633 – 642.en_US
dc.identifier.citedreferenceFeng BY, Shelat A, Doman TN, Guy RK, Shoichet BK. High‐throughput assays for promiscuous inhibitors. Nat Chem Biol 2005; 1: 146 – 148.en_US
dc.identifier.citedreferenceShoichet BK. Screening in a spirit haunted world. Drug Discov Today 2006; 11: 607 – 615.en_US
dc.identifier.citedreferencePellecchia M, et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 2008; 7: 738 – 745.en_US
dc.identifier.citedreferenceChaires JB. Calorimetry and thermodynamics in drug design. Annu Rev Biophys 2008; 37: 135 – 151.en_US
dc.identifier.citedreferenceCooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov 2002; 1: 515 – 528.en_US
dc.identifier.citedreferenceStevens AJ, Jensen JJ, Wyller K, Kilgore PC, Chatterjee S, Rohrbaugh ML. The role of public‐sector research in the discovery of drugs and vaccines. N Engl J Med 2011; 364: 535 – 541.en_US
dc.identifier.citedreferenceFrye S, Crosby M, Edwards T, Juliano R. US academic drug discovery. Nat Rev Drug Discov 2011; 10: 409 – 410.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.