Show simple item record

High-Dimensional Variable Selection for Multivariate and Survival Data with Applications to Brain Imaging and Genetic Association Studies.

dc.contributor.authorLi, Yanmingen_US
dc.date.accessioned2015-01-30T20:10:31Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-01-30T20:10:31Z
dc.date.issued2014en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110329
dc.description.abstractIn this dissertation, we aim to solve important high-dimensional variable selection problems with either structured multivariate or discrete survival outcomes, with applications to brain imaging and genetic association studies. First, we introduce the multivariate sparse group lasso for variable selection in multivariate multiple regressions with both grouped covariates and responses. We propose an efficient mixed coordinate descent algorithm for the penalized least square estimation. The method is able to effectively remove unimportant groups and unimportant individual coefficients within important groups, particularly for large p small n problems. It is flexible in handling various complex group structures. The finite sample oracle properties of the proposed method are established and the method is applied to an eQTL association study. Secondly, we propose a multi-stage method for conducting structured brain-wide-genome-wide association studies via the multivariate sparse group lasso. It is more efficient in selecting the important signals and can avoid large number of multiple comparisons while effectively control the false discoveries by using the stability selection. We apply the proposed method to a brain-wide GWAS using ADNI PET imaging and genotype data. The proposed method considers the anatomic brain structure and the gene structure in the human genome. We confirm several previously reported and also find some novel genes that are either associated with brain glucose metabolism or with their associations significantly modified by Alzheimer's disease status. Thirdly, we propose a full-likelihood based variable selection method for a discrete-time and cure-rate survival model with high-dimensional time-varying predictors. The method is motivated by the ADNI longitudinal brain imaging study to predict MCI-to-AD conversions. The conversion time was only observed on discrete time intervals and the studied sample consists of a mixture of a non-cure group and a cure group. The proposed method uses the full likelihood to jointly model the cure rate and the non-cure survival. Variable selection is carried out using the elastic net penalties. The method can efficiently and effectively select the important predictors in both models. We evaluate the method through extensive simulations and apply it to the ADNI PET brain imaging data to predict MCI-to-AD conversions.en_US
dc.language.isoen_USen_US
dc.subjecthigh-dimensional data analysisen_US
dc.subjectvariable selectionen_US
dc.subjectthe multivariate sparse group lassoen_US
dc.subjectbrain-wide GWASen_US
dc.subjectADNI longitudinal PET imaging studyen_US
dc.subjectcure modelen_US
dc.titleHigh-Dimensional Variable Selection for Multivariate and Survival Data with Applications to Brain Imaging and Genetic Association Studies.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiostatisticsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberNan, Binen_US
dc.contributor.committeememberZhu, Jien_US
dc.contributor.committeememberWen, Xiaoquan Williamen_US
dc.contributor.committeememberJohnson, Timothy D.en_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110329/1/liyanmin_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.