Show simple item record

The metabolic syndrome and neuropathy: Therapeutic challenges and opportunities

dc.contributor.authorCallaghan, Brianen_US
dc.contributor.authorFeldman, Evaen_US
dc.date.accessioned2015-04-02T15:12:45Z
dc.date.available2015-04-02T15:12:45Z
dc.date.issued2013-09en_US
dc.identifier.citationCallaghan, Brian; Feldman, Eva (2013). "The metabolic syndrome and neuropathy: Therapeutic challenges and opportunities." Annals of Neurology 74(3): 397-403.en_US
dc.identifier.issn0364-5134en_US
dc.identifier.issn1531-8249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110888
dc.publisherWiley Periodicals, Inc.en_US
dc.titleThe metabolic syndrome and neuropathy: Therapeutic challenges and opportunitiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPsychiatryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110888/1/ana23986.pdf
dc.identifier.doi10.1002/ana.23986en_US
dc.identifier.sourceAnnals of Neurologyen_US
dc.identifier.citedreferenceKnowler WC, Barrett‐Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393 – 403.en_US
dc.identifier.citedreferenceMimura N, Fulciniti M, Gorgun G, et al. Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 2012; 119: 5772 – 5781.en_US
dc.identifier.citedreferenceVolkmann K, Lucas JL, Vuga D, et al. Potent and selective inhibitors of the inositol‐requiring enzyme 1 endoribonuclease. J Biol Chem 2011; 286: 12743 – 12755.en_US
dc.identifier.citedreferenceKanno H, Ozawa H, Sekiguchi A, et al. The role of mTOR signaling pathway in spinal cord injury. Cell Cycle 2012; 11: 3175 – 3179.en_US
dc.identifier.citedreferenceLamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs and mTOR inhibitors as anti‐aging therapeutics. J Clin Invest 2013; 123: 980 – 989.en_US
dc.identifier.citedreferenceVinayak S, Carlson RW. mTOR inhibitors in the treatment of breast cancer. Oncology (Williston Park) 2013; 27: 38 – 44, 46, 48 passim.en_US
dc.identifier.citedreferenceBen Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell‐cycle arrest through REDD1. Cancer Res 2011; 71: 4366 – 4372.en_US
dc.identifier.citedreferenceKalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase‐dependent manner. Cell Metab 2010; 11: 390 – 401.en_US
dc.identifier.citedreferenceKang YS, Cha JJ, Hyun YY, Cha DR. Novel C‐C chemokine receptor 2 antagonists in metabolic disease: a review of recent developments. Expert Opin Investig Drugs 2011; 20: 745 – 756.en_US
dc.identifier.citedreferenceSemple BD, Kossmann T, Morganti‐Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 2010; 30: 459 – 473.en_US
dc.identifier.citedreferenceRumore MM, Kim KS. Potential role of salicylates in type 2 diabetes. Ann Pharmacother 2010; 44: 1207 – 1221.en_US
dc.identifier.citedreferenceGoldfine AB, Fonseca V, Jablonski KA, et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2010; 152: 346 – 357.en_US
dc.identifier.citedreferenceCallaghan B, Cheng HT, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012; 11: 521 – 534.en_US
dc.identifier.citedreferenceCallaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol 2012; 25: 536 – 541.en_US
dc.identifier.citedreferenceCallaghan BC, Cheng HT, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 2012; 11: 521 – 534.en_US
dc.identifier.citedreferenceAdams KF, Schatzkin A, Harris TB, et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 2006; 355: 763 – 778.en_US
dc.identifier.citedreferenceFinucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body‐mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country‐years and 9.1 million participants. Lancet 2011; 377: 557 – 567.en_US
dc.identifier.citedreferenceTabas I, Glass CK. Anti‐inflammatory therapy in chronic disease: challenges and opportunities. Science 2013; 339: 166 – 172.en_US
dc.identifier.citedreferenceFord ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287: 356 – 359.en_US
dc.identifier.citedreferenceFord ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005; 28: 2745 – 2749.en_US
dc.identifier.citedreferenceCameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004; 33: 351 – 375.en_US
dc.identifier.citedreferenceXu WH, Ruan XN, Fu XJ, et al. Prevalence of the metabolic syndrome in Pudong New Area of Shanghai using three proposed definitions among Chinese adults. BMC Public Health 2010; 10: 246.en_US
dc.identifier.citedreferenceZuo H, Shi Z, Hu X, et al. Prevalence of metabolic syndrome and factors associated with its components in Chinese adults. Metabolism 2009; 58: 1102 – 1108.en_US
dc.identifier.citedreferenceBharucha NE, Bharucha AE, Bharucha EP. Prevalence of peripheral neuropathy in the Parsi community of Bombay. Neurology 1991; 41: 1315 – 1317.en_US
dc.identifier.citedreferenceSavettieri G, Rocca WA, Salemi G, et al. Prevalence of diabetic neuropathy with somatic symptoms: a door‐to‐door survey in two Sicilian municipalities. Sicilian Neuro‐Epidemiologic Study (SNES) Group. Neurology 1993; 43: 1115 – 1120.en_US
dc.identifier.citedreferenceGregg EW, Sorlie P, Paulose‐Ram R, et al. Prevalence of lower‐extremity disease in the US adult population >=40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care 2004; 27: 1591 – 1597.en_US
dc.identifier.citedreferenceAbbott CA, Malik RA, van Ross ER, et al. Prevalence and characteristics of painful diabetic neuropathy in a large community‐based diabetic population in the U.K. Diabetes Care 2011; 34: 2220 – 2224.en_US
dc.identifier.citedreferenceDaousi C, MacFarlane IA, Woodward A, et al. Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med 2004; 21: 976 – 982.en_US
dc.identifier.citedreferenceGaler BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000; 47: 123 – 128.en_US
dc.identifier.citedreferenceAgrawal Y, Carey JP, Della Santina CC, et al. Diabetes, vestibular dysfunction, and falls: analyses from the National Health and Nutrition Examination Survey. Otol Neurotol 2010; 31: 1445 – 1450.en_US
dc.identifier.citedreferenceMargolis DJ, Malay DS, Hoffstad OJ, et al. Incidence of diabetic foot ulcer and lower extremity amputation among Medicare beneficiaries, 2006 to 2008: Data Points #2. 2011.en_US
dc.identifier.citedreferenceVan Acker K, Bouhassira D, De Bacquer D, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab 2009; 35: 206 – 213.en_US
dc.identifier.citedreferenceVinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig 2013; 4: 4 – 18.en_US
dc.identifier.citedreferenceDe Block CE, De Leeuw IH, Van Gaal LF. Impact of overweight on chronic microvascular complications in type 1 diabetic patients. Diabetes Care 2005; 28: 1649 – 1655.en_US
dc.identifier.citedreferenceStraub RH, Elbracht R, Kramer BK, et al. Influence of digoxin‐like immunoreactive factor on late complications in patients with diabetes mellitus. Eur J Clin Invest 1994; 24: 482 – 487.en_US
dc.identifier.citedreferenceTesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005; 352: 341 – 350.en_US
dc.identifier.citedreferenceCallaghan BC, Little AA, Feldman EL, Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev 2012; 6: CD007543.en_US
dc.identifier.citedreferenceFranklin GM, Kahn LB, Baxter J, et al. Sensory neuropathy in non‐insulin‐dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol 1990; 131: 633 – 643.en_US
dc.identifier.citedreferenceNovella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve 2001; 24: 1229 – 1231.en_US
dc.identifier.citedreferenceSingleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care 2001; 24: 1448 – 1453.en_US
dc.identifier.citedreferenceSmith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre‐diabetic neuropathy. Diabetes Care 2006; 29: 1294 – 1299.en_US
dc.identifier.citedreferenceBonadonna RC, Cucinotta D, Fedele D, et al. The metabolic syndrome is a risk indicator of microvascular and macrovascular complications in diabetes: results from Metascreen, a multicenter diabetes clinic‐based survey. Diabetes Care 2006; 29: 2701 – 2707.en_US
dc.identifier.citedreferenceCosta LA, Canani LH, Lisboa HR, et al. Aggregation of features of the metabolic syndrome is associated with increased prevalence of chronic complications in type 2 diabetes. Diabet Med 2004; 21: 252 – 255.en_US
dc.identifier.citedreferenceIsomaa B, Henricsson M, Almgren P, et al. The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia 2001; 44: 1148 – 1154.en_US
dc.identifier.citedreferenceWiggin TD, Sullivan KA, Pop‐Busui R, et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes 2009; 58: 1634 – 1640.en_US
dc.identifier.citedreferenceSmith AG, Rose K, Singleton JR. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J Neurol Sci 2008; 273: 25 – 28.en_US
dc.identifier.citedreferenceOdegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 2013; 339: 172 – 177.en_US
dc.identifier.citedreferenceHinder LM, Vincent AM, Burant CF, et al. Bioenergetics in diabetic neuropathy: what we need to know. J Peripher Nerv Syst 2012; 17 ( suppl 2 ): 10 – 14.en_US
dc.identifier.citedreferenceHinder LM, Vivekanandan‐Giri A, McLean LL, et al. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol 2013; 216: 1 – 11.en_US
dc.identifier.citedreferenceVincent AM, Hinder LM, Pop‐Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst 2009; 14: 257 – 267.en_US
dc.identifier.citedreferenceVincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007; 148: 548 – 558.en_US
dc.identifier.citedreferenceVincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7: 573 – 583.en_US
dc.identifier.citedreferenceLupachyk S, Watcho P, Obrosov AA, et al. Endoplasmic reticulum stress contributes to prediabetic peripheral neuropathy. Exp Neurol 2013; 247: 342 – 348.en_US
dc.identifier.citedreferenceOlefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72: 219 – 246.en_US
dc.identifier.citedreferencePal D, Dasgupta S, Kundu R, et al. Fetuin‐A acts as an endogenous ligand of TLR4 to promote lipid‐induced insulin resistance. Nat Med 2012; 18: 1279 – 1285.en_US
dc.identifier.citedreferenceSamuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148: 852 – 871.en_US
dc.identifier.citedreferenceCheng HT, Dauch JR, Hayes JM, et al. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol Dis 2012; 45: 280 – 287.en_US
dc.identifier.citedreferenceDoupis J, Lyons TE, Wu S, et al. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 2009; 94: 2157 – 2163.en_US
dc.identifier.citedreferenceHerder C, Lankisch M, Ziegler D, et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 2009; 32: 680 – 682.en_US
dc.identifier.citedreferenceLennertz RC, Medler KA, Bain JL, et al. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. J Neurophysiol 2011; 106: 905 – 914.en_US
dc.identifier.citedreferenceEffect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol 1995; 38: 869 – 880.en_US
dc.identifier.citedreferenceIntensive blood‐glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837 – 853.en_US
dc.identifier.citedreferenceDuckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129 – 139.en_US
dc.identifier.citedreferenceIsmail‐Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010; 376: 419 – 430.en_US
dc.identifier.citedreferenceWang G, Pan J, Chen SD. Kinases and kinase signaling pathways: potential therapeutic targets in Parkinson's disease. Prog Neurobiol 2012; 98: 207 – 221.en_US
dc.identifier.citedreferenceGraczyk PP. JNK inhibitors as anti‐inflammatory and neuroprotective agents. Future Med Chem 2013; 5: 539 – 551.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.