Show simple item record

How obliquity cycles powered early Pleistocene global ice‐volume variability

dc.contributor.authorTabor, Clay R.en_US
dc.contributor.authorPoulsen, Christopher J.en_US
dc.contributor.authorPollard, Daviden_US
dc.date.accessioned2015-05-04T20:35:57Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03-28en_US
dc.identifier.citationTabor, Clay R.; Poulsen, Christopher J.; Pollard, David (2015). "How obliquity cycles powered early Pleistocene global ice‐volume variability." Geophysical Research Letters 42(6): 1871-1879.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111096
dc.description.abstractMilankovitch theory proposes that the magnitude of high‐latitude summer insolation dictates the continental ice‐volume response by controlling summer snow melt, thus anticipating a substantial ice‐volume contribution from the strong summer insolation signal of precession. Yet almost all of the early Pleistocene δ18O records' signal strength resides at the frequency of obliquity. Here we explore this discrepancy using a climate‐vegetation‐ice sheet model to simulate climate‐ice sheet response to transient orbits of varying obliquity and precession. Spectral analysis of our results shows that despite contributing significantly less to the summer insolation signal, almost 60% of the ice‐volume power exists at the frequency of obliquity due to a combination of albedo feedbacks, seasonal offsets, and orbital cycle duration differences. Including eccentricity modulation of the precession ice‐volume component and assuming a small Antarctic ice response to orbital forcing produce a signal that agrees with the δ18O ice‐volume proxy records.Key PointsClimate responses to orbital changes simulated with an Earth system modelModel produces a larger ice‐volume response to obliquity than precessionModel results agree with early Pleistocene oxygen isotope recordsen_US
dc.publisherBelgradeen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherice sheeten_US
dc.subject.otherisotopesen_US
dc.subject.othervegetationen_US
dc.subject.otherorbiten_US
dc.subject.othersea iceen_US
dc.subject.otherPleistoceneen_US
dc.titleHow obliquity cycles powered early Pleistocene global ice‐volume variabilityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111096/1/grl52691-sup-0001-SIGRL.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111096/2/grl52691.pdf
dc.identifier.doi10.1002/2015GL063322en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceRavelo, A. C., D. H. Andreasen, M. Lyle, A. O. Lyle, and M. W. Wara ( 2004 ), Regional climate shifts caused by gradual global cooling in the Pliocene epoch, Nature, 429, 263 – 267, doi: 10.1038/nature02567.en_US
dc.identifier.citedreferenceLisiecki, L. E., and M. E. Raymo ( 2005 ), A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ 18 O records, Paleoceanography, 20, PA1003, doi: 10.1029/2004PA001071.en_US
dc.identifier.citedreferenceLisiecki, L. E., and M. E. Raymo ( 2007 ), Plio–Pleistocene climate evolution: Trends and transitions in glacial cycle dynamics, Quat. Sci. Rev., 26 ( 1–2 ), 56 – 69, doi: 10.1016/j.quascirev.2006.09.005.en_US
dc.identifier.citedreferenceLoutre, M. F., D. Paillard, F. Vimeux, and E. Cortijo ( 2004 ), Does mean annual insolation have the potential to change the climate?, Earth Planet. Sci. Lett., 221 ( 1–4 ), 1 – 14, doi: 10.1016/S0012-821X(04)00108-6.en_US
dc.identifier.citedreferenceMantsis, D. F., A. C. Clement, A. J. Broccoli, and M. P. Erb ( 2011 ), Climate feedbacks in response to changes in obliquity, J. Clim., 24 ( 11 ), 2830 – 2845, doi: 10.1175/2010JCLI3986.1.en_US
dc.identifier.citedreferenceMilankovitch, M. ( 1941 ), Kanon der Erdbestrahlung und Seine Andwendung auf das Eiszeiten‐Problem, R. Serbian Acad., Belgrade, Serbia.en_US
dc.identifier.citedreferencePetit, J. R., et al. ( 1999 ), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429 – 436, doi: 10.1038/20859.en_US
dc.identifier.citedreferencePhilander, S. G., and A. V. Fedorov ( 2003 ), Role of tropics in changing the response to Milankovich forcing some three million years ago, Paleoceanography, 18 ( 2 ), 1045, doi: 10.1029/2002PA000837.en_US
dc.identifier.citedreferencePollard, D. ( 1980 ), A simple parameterization for ice sheet ablation rate, Tellus, 32 ( 4 ), 384 – 388, doi: 10.1111/j.2153-3490.1980.tb00965.x.en_US
dc.identifier.citedreferencePollard, D., and R. M. DeConto ( 2009 ), Modelling West Antarctic ice sheet growth and collapse through the past five million years, Nature, 458, 329 – 332, doi: 10.1038/nature07809.en_US
dc.identifier.citedreferencePollard, D., and R. M. DeConto ( 2012 ), Description of a hybrid ice sheet‐shelf model, and application to Antarctica, Geosci. Model Dev., 5 ( 5 ), 1273 – 1295, doi: 10.5194/gmd-5-1273-2012.en_US
dc.identifier.citedreferenceRaymo, M. E., and K. Nisancioglu ( 2003 ), The 41 kyr world: Milankovitch's other unsolved mystery, Paleoceanography, 18 ( 1 ), 1011, doi: 10.1029/2002PA000791.en_US
dc.identifier.citedreferenceRaymo, M. E., L. E. Lisiecki, and K. H. Nisancioglu ( 2006 ), Plio‐Pleistocene ice volume, Antarctic climate, and the global δ 18 O record, Science, 313, 492 – 495, doi: 10.1126/science.1123296.en_US
dc.identifier.citedreferenceRobinson, A., R. Calov, and A. Ganopolski ( 2010 ), An efficient regional energy‐moisture balance model for simulation of the Greenland Ice Sheet response to climate change, Cryosphere, 4 ( 2 ), 129 – 144, doi: 10.5194/tc-4-129-2010.en_US
dc.identifier.citedreferenceRoe, G. ( 2006 ), In defense of Milankovitch, Geophys. Res. Lett., 33, L24703, doi: 10.1029/2006GL027817.en_US
dc.identifier.citedreferenceRuddiman, W. F. ( 2003 ), Orbital insolation, ice volume, and greenhouse gases, Quat. Sci. Rev., 22, 1597 – 1629, doi: 10.1016/S0277-3791(03)00087-8.en_US
dc.identifier.citedreferenceRuddiman, W. F. ( 2006 ), Orbital changes and climate, Quat. Sci. Rev., 25, 3092 – 3112, doi: 10.1016/j.quascirev.2006.09.001.en_US
dc.identifier.citedreferenceSosdian, S., and Y. Rosenthal ( 2009 ), Deep‐sea temperature and ice volume changes across the Pliocene‐Pleistocene climate transitions, Science, 325, 306 – 310, doi: 10.1126/science.1169938.en_US
dc.identifier.citedreferenceTabor, C. R., C. J. Poulsen, and D. Pollard ( 2014 ), Mending Milankovitch's theory: Obliquity amplification by surface feedbacks, Clim. Past, 10 ( 1 ), 41 – 50, doi: 10.5194/cp-10-41-2014.en_US
dc.identifier.citedreferenceTuenter, E., S. L. Weber, F. J. Hilgen, L. J. Lourens, and A. Ganopolski ( 2004 ), Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation, Clim. Dyn., 24 ( 2–3 ), 279 – 295, doi: 10.1007/s00382-004-0490-1.en_US
dc.identifier.citedreferenceTuenter, E., S. L. Weber, F. J. Hilgen, and L. J. Lourens ( 2005 ), Sea‐ice feedbacks on the climatic response to precession and obliquity forcing, Geophys. Res. Lett., 32, L24704, doi: 10.1029/2005GL024122.en_US
dc.identifier.citedreferencevan den Berg, J., R. van de Wal, and H. Oerlemans ( 2008 ), A mass balance model for the Eurasian ice sheet for the last 120,000 years, Global Planet. Change, 61 ( 3–4 ), 194 – 208, doi: 10.1016/j.gloplacha.2007.08.015.en_US
dc.identifier.citedreferenceVettoretti, G., and W. R. Peltier ( 2004 ), Sensitivity of glacial inception to orbital and greenhouse gas climate forcing, Quat. Sci. Rev., 23 ( 3–4 ), 499 – 519, doi: 10.1016/j.quascirev.2003.08.008.en_US
dc.identifier.citedreferenceAbe‐Ouchi, A., T. Segawa, and F. Saito ( 2007 ), Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle, Clim. Past, 3, 423 – 438, doi: 10.5194/cp-3-423-2007.en_US
dc.identifier.citedreferenceAlder, J. R., S. W. Hostetler, D. Pollard, and A. Schmittner ( 2011 ), Evaluation of a present‐day climate simulation with a new coupled atmosphere‐ocean model GENMOM, Geosci. Model Dev., 4, 69 – 83, doi: 10.5194/gmd-4-69-2011.en_US
dc.identifier.citedreferenceBalco, G., and C. W. Rovey ( 2010 ), Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet, Geology, 38 ( 9 ), 795 – 798, doi: 10.1130/G30946.1.en_US
dc.identifier.citedreferenceBender, M. L. ( 2002 ), Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth Planet. Sci. Lett., 204 ( 1–2 ), 275 – 289, doi: 10.1016/S0012-821X(02)00980-9.en_US
dc.identifier.citedreferenceBerger, A., and M. F. Loutre ( 1991 ), Insolation values for the climate of the last 10 million years, Quat. Sci. Rev., 10 ( 4 ), 297 – 317, doi: 10.1016/0277-3791(91)90033-Q.en_US
dc.identifier.citedreferenceBerger, A., X. S. Li, and M. F. Loutre ( 1999 ), Modelling northern hemisphere ice volume over the last 3 Ma, Quat. Sci. Rev., 18 ( 1 ), 1 – 11, doi: 10.1016/S0277-3791(98)00033-X.en_US
dc.identifier.citedreferenceBirchfield, G. E., J. Weertman, and A. T. Lunde ( 1981 ), A paleoclimate model of Northern Hemisphere ice sheets, Quat. Res., 15 ( 2 ), 126 – 142, doi: 10.1016/0033-5894(81)90100-9.en_US
dc.identifier.citedreferenceClark, P. U., and D. Pollard ( 1998 ), Origin of the middle Pleistocene transition by ice sheet erosion of regolith, Paleoceanography, 13 ( 1 ), 1 – 9, doi: 10.1029/97PA02660.en_US
dc.identifier.citedreferenceClaussen, M., J. Fohlmeister, and A. Ganopolski ( 2006 ), Vegetation dynamics amplifies precessional forcing, Geophys. Res. Lett., 33, L00709, doi: 10.1029/2006GL026111.en_US
dc.identifier.citedreferenceCook, C. P., et al. ( 2013 ), Dynamic behaviour of the East Antarctic Ice Sheet during Pliocene warmth, Nat. Geosci., 6 ( 9 ), 765 – 769, doi: 10.1038/NGEO1889.en_US
dc.identifier.citedreferenceDeConto, R. M., D. Pollard, P. A. Wilson, H. Palike, C. H. Lear, and M. Pagani ( 2008 ), Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652 – 656, doi: 10.1038/nature07337.en_US
dc.identifier.citedreferenceErb, M. P., A. J. Broccoli, and A. C. Clement ( 2013 ), The contribution of radiative feedbacks to orbitally driven climate change, J. Clim., 26 ( 16 ), 5897 – 5914, doi: 10.1175/JCLI-D-12-00419.1.en_US
dc.identifier.citedreferenceGallimore, R. G., and J. E. Kutzbach ( 1995 ), Snow cover and sea‐ice sensitivity to generic changes in Earth orbital parameters, J. Geophys. Res., 100 ( D1 ), 1103 – 1120, doi: 10.1029/94JD02686.en_US
dc.identifier.citedreferenceGallimore, R. G., and J. E. Kutzbach ( 1996 ), Role of orbitally induced changes in tundra area in the onset of glaciation, Nature, 381 ( 6582 ), 503 – 505, doi: 10.1038/381503a0.en_US
dc.identifier.citedreferenceHerrington, A. R., and C. J. Poulsen ( 2012 ), Terminating the last interglacial: The role of ice sheet–climate feedbacks in a GCM asynchronously coupled to an ice sheet model, J. Clim., 25 ( 6 ), 1871 – 1882, doi: 10.1175/JCLI-D-11-00218.1.en_US
dc.identifier.citedreferenceHorton, D. E., C. J. Poulsen, and D. Pollard ( 2010 ), Influence of high‐latitude vegetation feedbacks on late Palaeozoic glacial cycles, Nat. Geosci., 3 ( 8 ), 572 – 577, doi: 10.1038/ngeo922.en_US
dc.identifier.citedreferenceHuybers, P. ( 2006 ), Early Pleistocene glacial cycles and the integrated summer insolation forcing, Science, 303 ( 5786 ), 508 – 511, doi: 10.1126/science.1125249.en_US
dc.identifier.citedreferenceHuybers, P. ( 2007 ), Glacial variability over the last two million years: An extended depth‐derived age model, continuous obliquity pacing, and the Pleistocene progression, Quat. Sci. Rev., 26 ( 1–2 ), 37 – 55, doi: 10.1016/j.quascirev.2006.07.013.en_US
dc.identifier.citedreferenceHuybers, P., and C. Wunsch ( 2005 ), Obliquity pacing of the late Pleistocene glacial terminations, Nature, 434 ( 7032 ), 491 – 494, doi: 10.1038/nature03401.en_US
dc.identifier.citedreferenceHuybers, P., and E. Tziperman ( 2008 ), Integrated summer insolation forcing and 40,000‐year glacial cycles: The perspective from an ice‐sheet/energy‐balance model, Paleoceanography, 23, PA1208, doi: 10.1029/2007PA001463.en_US
dc.identifier.citedreferenceJackson, C. S., and A. J. Broccoli ( 2003 ), Orbital forcing of Arctic climate: Mechanisms of climate response and implications for continental glaciation, Clim. Dyn., 21 ( 7–8 ), 539 – 557, doi: 10.1007/s00382-003-0351-3.en_US
dc.identifier.citedreferenceKaplan, J. O., et al. ( 2003 ), Climate change and Arctic ecosystems: 2. Modeling, paleodata‐model comparisons, and future projections, J. Geophys. Res., 108 ( D19 ), 8171, doi: 10.1029/2002JD002559.en_US
dc.identifier.citedreferenceLee, S. Y., and C. J. Poulsen ( 2005 ), Tropical Pacific climate response to obliquity forcing in the Pleistocene, Paleoceanography, 20, PA4010, doi: 10.1029/2005PA001161.en_US
dc.identifier.citedreferenceLee, S. Y., and C. J. Poulsen ( 2008 ), Amplification of obliquity forcing through mean‐annual and seasonal atmospheric feedbacks, Clim. Past, 4, 205 – 213, doi: 10.5194/cp-4-205-2008.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.