Show simple item record

Biomass harvest of invasive Typha promotes plant diversity in a Great Lakes coastal wetland

dc.contributor.authorLishawa, Shane C.en_US
dc.contributor.authorLawrence, Beth A.en_US
dc.contributor.authorAlbert, Dennis A.en_US
dc.contributor.authorTuchman, Nancy C.en_US
dc.date.accessioned2015-05-04T20:37:24Z
dc.date.available2016-07-05T17:27:59Zen
dc.date.issued2015-05en_US
dc.identifier.citationLishawa, Shane C.; Lawrence, Beth A.; Albert, Dennis A.; Tuchman, Nancy C. (2015). "Biomass harvest of invasive Typha promotes plant diversity in a Great Lakes coastal wetland." Restoration Ecology 23(3): 228-237.en_US
dc.identifier.issn1061-2971en_US
dc.identifier.issn1526-100Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111287
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherLake Huronen_US
dc.subject.otherseed banken_US
dc.subject.otherbiodiversityen_US
dc.subject.otherbiomass energyen_US
dc.subject.otherconservationen_US
dc.subject.otherhybrid cattailen_US
dc.titleBiomass harvest of invasive Typha promotes plant diversity in a Great Lakes coastal wetlanden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111287/1/rec12167.pdf
dc.identifier.doi10.1111/rec.12167en_US
dc.identifier.sourceRestoration Ecologyen_US
dc.identifier.citedreferenceR Development Core Team ( 2009 ) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austriaen_US
dc.identifier.citedreferenceMcKendry P ( 2002 ) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37 – 46en_US
dc.identifier.citedreferenceMiller JR, Hobbs RJ ( 2007 ) Habitat restoration—do we know what we're doing? Restoration Ecology 15: 382 – 390en_US
dc.identifier.citedreferenceMitchell ME, Lishawa SC, Geddes P, Larkin DJ, Treering D, Tuchman NC ( 2011 ) Time‐dependent impacts of cattail invasion in a Great Lakes coastal wetland complex. Wetlands 31: 1143 – 1149en_US
dc.identifier.citedreferenceNackley LL, Lieu VH, Garcia BB, Richardson JJ, Isaac E, Spies K, Rigdon S, Schwartz DT ( 2013 ) Bioenergy that supports ecological restoration. Frontiers in Ecology and the Environment 11: 535 – 540en_US
dc.identifier.citedreferenceNational Oceanic and Atmospheric Administration 2013. Great Lakes Environmental Research Laboratory. www.glerl.noaa.gov/data/now/wlevels/levels.html (accessed 4 Dec 2013)en_US
dc.identifier.citedreferenceOksanen J, Kindt R, Legendre P, O'Hara RB ( 2006 ) vegan: Community ecology package. R package version 1.8‐3. http://www.cran.r-project.orgen_US
dc.identifier.citedreferenceOsland MJ, González E, Richardson CJ ( 2011 ) Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland. Ecological Applications 21: 715 – 728en_US
dc.identifier.citedreferencePrince HH, Padding PI, Knapton RW ( 1992 ) Waterfowl use of the Laurentian Great Lakes. Journal of Great Lakes Research 18: 673 – 699en_US
dc.identifier.citedreferenceQuinn LD, Endres AB, Voigt TB ( 2013 ) Why not harvest existing invaders for bioethanol? Biological Invasions 16: 1559 – 1566en_US
dc.identifier.citedreferenceRoberts DW ( 2012 ) labdsv: Ordination and multivariate analysis for ecology. R package version 1.5‐0. http://www.cran.r-project.orgen_US
dc.identifier.citedreferenceSierszen ME, Morrice JA, Trebitz AS, Hoffman JC ( 2012 ) A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management 15: 92 – 106en_US
dc.identifier.citedreferenceSmith SG ( 1987 ) Typha: its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie 27: 129 – 138en_US
dc.identifier.citedreferenceStrayer DL, Eviner VT, Jeschke JM, Pace ML ( 2006 ) Understanding the long‐term effects of species invasions. Trends in Ecology & Evolution 21: 645 – 651en_US
dc.identifier.citedreferenceSuding KN, Gross KL, Houseman GR ( 2004 ) Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution 19: 46 – 53en_US
dc.identifier.citedreferenceTuchman NC, Jankowski KJ, Geddes P, Wildova R, Larkin DJ, Goldberg DE ( 2009 ) Patterns of environmental change associates with Typha × glauca invasion in a Great Lakes coastal wetland. Wetlands 29: 964 – 975en_US
dc.identifier.citedreferenceTulbure MG, Johnston CA ( 2010 ) Environmental conditions promoting non‐native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 30: 577 – 587en_US
dc.identifier.citedreferenceTulbure MG, Johnston CA, Auger DL ( 2007 ) Rapid invasion of a Great Lakes coastal wetland by non‐native Phragmites australis and Typha. Journal of Great Lakes Research 33: 269 – 279en_US
dc.identifier.citedreferenceUzarski DG, Burton TM, Cooper MJ, Ingram JW, Timmermans STA ( 2005 ) Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish‐based index of biotic integrity. Journal of Great Lakes Research 31: 171 – 187en_US
dc.identifier.citedreferenceVaccaro LE, Bedford BL, Johnston CA ( 2009 ) Litter accumulation promotes dominance of invasive species of cattails ( Typha spp.) in Lake Ontario wetlands. Wetlands 29: 1036 – 1048en_US
dc.identifier.citedreferencevan der Valk AG, Davis CB ( 1978 ) The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322 – 335en_US
dc.identifier.citedreferenceZedler JB ( 2009 ) Feedbacks that might sustain natural, invaded and restored states in herbaceous wetlands. Pages 236 – 258. In: Hobbs R, Suding K (eds) New models for ecosystem dynamics and restoration. Island Press, Washington, D.C.en_US
dc.identifier.citedreferenceAlbert DA, Minc LD ( 2004 ) Plants as regional indicators of Great Lakes coastal wetland health. Aquatic Ecosystem Health & Management 7: 233 – 247en_US
dc.identifier.citedreferenceAlbert DA, Wilcox DA, Ingram JW, Thompson TA ( 2005 ) Hydrogeomorphic classification for Great Lakes coastal wetlands. Journal of Great Lakes Research 31: 129 – 146en_US
dc.identifier.citedreferenceAlbert DA, Cox DT, Lemein T, Yoon HD ( 2013 ) Characterization of Schoenoplectus pungens in a Great Lakes coastal wetland and a Pacific Northwestern estuary. Wetlands 33: 445 – 458en_US
dc.identifier.citedreferenceAnderson MJ ( 2001 ) A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26: 32 – 46en_US
dc.identifier.citedreferenceAngel JR, Kunkel KE ( 2010 ) The response of Great Lakes water levels to future climate scenarios with an emphasis on Lake Michigan‐Huron. Journal of Great Lakes Research 36: 51 – 58en_US
dc.identifier.citedreferenceAngeloni NL, Jankowski KJ, Tuchman NC, Kelly JJ ( 2006 ) Effects of an invasive cattail species ( Typha x glauca ) on sediment nitrogen and microbial community composition in a freshwater wetland. FEMS Microbiology Letters 263: 86 – 92en_US
dc.identifier.citedreferenceBoers AM, Zedler JB ( 2008 ) Stabilized water levels and Typha invasiveness. Wetlands 28: 676 – 685en_US
dc.identifier.citedreferenceCicek N, Lambert S, Venema H, Snelgrove K, Bibeau E, Grosshans R ( 2006 ) Nutrient removal and bio‐energy production from Netley‐Libau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass and Bioenergy 30: 529 – 536en_US
dc.identifier.citedreferenceDubbe DR, Garver EG, Pratt DC ( 1988 ) Production of cattail ( Typha spp.) biomass in Minnesota, USA. Biomass 17: 79 – 104en_US
dc.identifier.citedreferenceDufrene M, Legendre P ( 1997 ) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67: 345 – 366en_US
dc.identifier.citedreferenceEwert DN, Hamas MJ ( 1995 ) Ecology of terrestrial migratory birds during migration in the Midwest. USFS NC‐187. United States Forest Service, St. Paul, Minnesotaen_US
dc.identifier.citedreferenceFarrer EC, Goldberg DE ( 2009 ) Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications 19: 398 – 412en_US
dc.identifier.citedreferenceFrieswyk CB, Zedler JB ( 2006 ) Do seed banks confer resilience to coastal wetlands invaded by Typha x glauca ? Canadian Journal of Botany‐Revue Canadienne De Botanique 84: 1882 – 1893en_US
dc.identifier.citedreferenceGrosshans RE, Gass P, Dohan R, Roy D, Venema HD, McCandless M ( 2012 ) Pages 51. Cattail harvesting for carbon offsets and nutrient capture: A “lake friendly” greenhouse gas project. The International Institute for Sustainable Development, Winnipeg, Canadaen_US
dc.identifier.citedreferenceHall SJ, Zedler JB ( 2010 ) Constraints on sedge meadow self‐restoration in urban wetlands. Restoration Ecology 18: 671 – 680en_US
dc.identifier.citedreferenceHall SJ, Lindig‐Cisneros R, Zedler JB ( 2008 ) Does harvesting sustain plant diversity in central Mexican wetlands. Wetlands 28: 776 – 792en_US
dc.identifier.citedreferenceHarris SW, Marshall WH ( 1963 ) Ecology of water‐level manipulations on a northern marsh. Ecology 44: 331 – 343en_US
dc.identifier.citedreferenceHerman KD, Masters LA, Penskar MR, Reznicek AA, Wilhelm GS, Brodowicz WW, Gardiner KP ( 2001 ) Floristic quality assessment with wetland categories and examples of computer applications for the state of Michigan. Report 2001‐17. Michigan Department of Natural Resources, Wildlife Division, Natural Heritage Program, Lansingen_US
dc.identifier.citedreferenceJakubowski AR, Casler MD, Jackson RD ( 2010 ) Landscape context predicts reed canarygrass invasion: implications for management. Wetlands 30: 685 – 692en_US
dc.identifier.citedreferenceKells BJ, Swinton SM ( 2014 ) Profitability of cellulosic biomass production in the northern Great Lakes region. Agronomy Journal 106: 397 – 406en_US
dc.identifier.citedreferenceLarkin DJ, Freyman MJ, Lishawa SC, Geddes P, Tuchman NC ( 2012 ) Mechanisms of dominance by the invasive hybrid cattail Typha × glauca. Biological Invasions 14: 65 – 77en_US
dc.identifier.citedreferenceLishawa SC, Albert DA, Tuchman NC ( 2010 ) Water level decline promotes Typha × glauca establishment and vegetation change in Great Lakes coastal wetlands. Wetlands 30: 1085 – 1096en_US
dc.identifier.citedreferenceLishawa SC, Treering DJ, Vail LM, Mckenna O, Grimm EC, Tuchman NC ( 2013 ) Reconstructing plant invasions using historical aerial imagery and pollen core analysis: Typha in the Laurentian Great Lakes. Diversity and Distributions 19: 14 – 28en_US
dc.identifier.citedreferenceLishawa SC, Jankowski KJ, Geddes P, Larkin DJ, Monks AM, Tuchman NC ( 2014 ) Denitrification in a Laurentian Great Lakes coastal wetland invaded by hybrid cattail ( Typha × glauca ). Aquatic Sciences 76: 483 – 495, DOI: 10.1007/s00027-014-0348-5en_US
dc.identifier.citedreferenceMcCune B, Grace JB ( 2002 ) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregonen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.