Show simple item record

A far‐red fluorescent probe for flow cytometry and image‐based functional studies of xenobiotic sequestering macrophages

dc.contributor.authorKeswani, Rahul K.en_US
dc.contributor.authorYoon, Gi S.en_US
dc.contributor.authorSud, Sudhaen_US
dc.contributor.authorStringer, Kathleen A.en_US
dc.contributor.authorRosania, Gus R.en_US
dc.date.accessioned2015-09-01T19:30:26Z
dc.date.available2016-10-10T14:50:23Zen
dc.date.issued2015-09en_US
dc.identifier.citationKeswani, Rahul K.; Yoon, Gi S.; Sud, Sudha; Stringer, Kathleen A.; Rosania, Gus R. (2015). "A far‐red fluorescent probe for flow cytometry and image‐based functional studies of xenobiotic sequestering macrophages." Cytometry Part A 87(9): 855-867.en_US
dc.identifier.issn1552-4922en_US
dc.identifier.issn1552-4930en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113126
dc.description.abstractClofazimine (CFZ) is an optically active, red‐colored chemotherapeutic agent that is FDA approved for the treatment of leprosy and is on the World Health Organization's list of essential medications. Interestingly, CFZ massively accumulates in macrophages where it forms crystal‐like drug inclusions (CLDIs) after oral administration of the drug in animals and humans. The analysis of the fluorescence spectra of CLDIs formed by resident tissue macrophages revealed that CFZ, when accumulated as CLDIs, undergoes a red shift in fluorescence excitation (from Ex: 540–570 to 560–600 nm) and emission (Em: 560–580 to 640–700 nm) signal relative to the soluble and free‐base crystal forms of CFZ. Using epifluorescence microscopy, CLDI(+) cells could be identified, relative to CLDI(−) cells, based on a >3‐fold increment in mean fluorescence signal at excitation 640 nm and emission at 670 nm. Similarly, CLDI(+) cells could be identified by flow cytometry, based on a >100‐fold increment in mean fluorescence signal using excitation lasers at 640 nm and emission detectors >600 nm. CLDI's fluorescence excitation and emission was orthogonal to that of cell viability dyes such as propidium iodide and 4,6‐diamidino‐2‐phenylindole dihydrochloride (DAPI), cellular staining dyes such as Hoechst 33342 (nucleus) and FM 1‐43 (plasma membrane), as well as many other fluorescently tagged antibodies used for immunophenotyping analyses. In vivo, >85% of CLDI(+) cells in the peritoneal exudate were F4/80(+) macrophages and >97% of CLDI(+) cells in the alveolar exudate were CD11c(+). Most importantly, the viability of cells was minimally affected by the presence of CLDIs. Accordingly, these results establish that CFZ fluorescence in CLDIs is suitable for quantitative flow cytometric phenotyping analysis and functional studies of xenobiotic sequestering macrophages. © 2015 International Society for Advancement of Cytometryen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherimmunophenotypingen_US
dc.subject.otherspectral microscopyen_US
dc.subject.otherintracellular crystalsen_US
dc.subject.otherCFZen_US
dc.titleA far‐red fluorescent probe for flow cytometry and image‐based functional studies of xenobiotic sequestering macrophagesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113126/1/cytoa22706.pdf
dc.identifier.doi10.1002/cyto.a.22706en_US
dc.identifier.sourceCytometry Part Aen_US
dc.identifier.citedreferenceVan Rijt LS, Kuipers H, Vos N, Hijdra D, Hoogsteden HC, Lambrecht BN. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. J Immunol Methods 2004; 288: 111 – 121.en_US
dc.identifier.citedreferenceRay A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp 2010; 35: e1488.en_US
dc.identifier.citedreferenceAustyn JM, Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 1981; 11: 805 – 815.en_US
dc.identifier.citedreferenceGautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, et al. Consortium the IG. Gene expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity. Nat Immunol 2013; 13: 1118 – 1128.en_US
dc.identifier.citedreferenceChoi KM, Kashyap PC, Dutta N, Stoltz G, Ordog T, Donohue TS, Bauer AJ, Linden DR, Szurszewski JH, Gibbons SJ, et al. CD206‐positive M2 macrophages that express heme oxygenase‐1 protect against diabetic gastroparesis in mice. Gastroenterology 2010; 138: 2399 – 2409.en_US
dc.identifier.citedreferenceBellón T, Martínez V, Lucendo B, del Peso G, Castro MJ, Aroeira LS, Rodríguez‐Sanz A, Ossorio M, Sánchez‐Villanueva R, Selgas R, et al. Alternative activation of macrophages in human peritoneum: Implications for peritoneal fibrosis. Nephrol Dial Transplant 2011; 26: 2995 – 3005.en_US
dc.identifier.citedreferenceEdwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298 – 1307.en_US
dc.identifier.citedreferenceClassen A, Lloberas J, Celada A. Macrophage Activation: Classical vs. Alternative. In: Reiner N, editor. Macrophages and Dendritic Cells, Vol. 531. New York: Humana Press; 2009. pp 29 – 43.en_US
dc.identifier.citedreferenceHunninghake GW, Gadek JE, Kawanami O, Ferrans VJ, Crystal RG. Inflammatory and immune processes in the human lung in health and disease: Evaluation by bronchoalveolar lavage. Am J Pathol 1979; 97: 149 – 206.en_US
dc.identifier.citedreferenceLiu G, Xia X‐P, Gong S‐L, Zhao Y. The macrophage heterogeneity: Difference between mouse peritoneal exudate and splenic F4/80 + macrophages. J Cell Physiol 2006; 352: 341 – 352.en_US
dc.identifier.citedreferenceDuan M, Li WC, Vlahos R, Maxwell MJ, Anderson GP, Hibbs ML. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease. J Immunol 2012; 189: 946 – 955.en_US
dc.identifier.citedreferenceLandsman L, Jung S. Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 2007; 179: 3488 – 3494.en_US
dc.identifier.citedreferenceWang JX, Bair AM, King SL, Shnayder R, Huang YF, Shieh CC, Soberman RJ, Fuhlbrigge RC, Nigrovic PA. Ly6G ligation blocks recruitment of neutrophils via a β2‐integrin‐ dependent mechanism. Blood 2012; 120: 1489 – 1498.en_US
dc.identifier.citedreferenceStevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel‐Poore MP. The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 2002; 932: 110 – 119.en_US
dc.identifier.citedreferencePeters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 2008; 321: 970 – 975.en_US
dc.identifier.citedreferenceShcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, et al. Far‐red fluorescent tags for protein imaging in living tissues. Biochem J 2009; 418: 567 – 574.en_US
dc.identifier.citedreferenceShcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA, Bogdanova EA, Zaraisky AG, Lukyanov S, et al. Bright far‐red fluorescent protein for whole‐body imaging. Nat Methods 2007; 4: 741 – 746.en_US
dc.identifier.citedreferenceRao J, Dragulescu‐Andrasi A, Yao H. Fluorescence imaging in vivo: Recent advances. Curr Opin Biotechnol 2007; 18: 17 – 25.en_US
dc.identifier.citedreferenceGrosset JH, Tyagi S, Almeida DV, Converse PJ, Li SY, Ammerman NC, Bishai WR, Enarson D, Trébucq A. Assessment of clofazimine activity in a second‐line regimen for tuberculosis in mice. Am J Respir Crit Care Med 2013; 188: 608 – 612.en_US
dc.identifier.citedreferenceSwanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, Moodley S, Mgaga Z, Tapley A, Bester LA, et al. Pharmacokinetics and pharmacodynamics of clofazimine in the mouse model of tuberculosis. Antimicrob Agents Chemother 2015; 59: 3042 – 3051.en_US
dc.identifier.citedreferenceTyagi S, Ammerman NC, Li S‐Y, Adamson J, Converse PJ, Swanson RV, Almeida DV, Grosset JH. Clofazimine shortens the duration of the first‐line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci USA 2015; 112: 869 – 874.en_US
dc.identifier.citedreferenceIrwin SM, Gruppo V, Brooks E, Gilliland J, Scherman M, Reichlen MJ, Leistikow R, Kramnik I, Nuermberger EL, Voskuil MI, et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob Agents Chemother 2014; 58: 4026 – 4034.en_US
dc.identifier.citedreferenceLenaerts A, Barry IIICE, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 2015; 264: 288 – 307.en_US
dc.identifier.citedreferenceWilliams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, Wallis RS, Mdluli KE, Nuermberger EL. Sterilizing activities of novel combinations lacking first‐ and second‐line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother 2012; 56: 3114 – 3120.en_US
dc.identifier.citedreferenceCholo MC, Steel HC, Fourie PB, Germishuizen WA, Anderson R. Clofazimine: Current status and future prospects. J Antimicrob Chemother 2012; 67: 290 – 298.en_US
dc.identifier.citedreferenceBaik J, Stringer KA, Mane G, Rosania GR. Multiscale distribution and bioaccumulation analysis of clofazimine reveals a massive immune system‐mediated xenobiotic sequestration response. Antimicrob Agents Chemother 2013; 57: 1218 – 1230.en_US
dc.identifier.citedreferenceBaik J, Rosania GR. Macrophages sequester clofazimine in an intracellular liquid crystal‐like supramolecular organization. PLoS One 2012; 7: e47494.en_US
dc.identifier.citedreferenceConalty ML, Jina AG. The antileprosy agent clofazimine (B.663) in macrophages: Light, electron microscopy and function studies. In: Reticuloendothelal System and Immune Phenoma. Berlin: Springer; 1971. pp 323 – 331.en_US
dc.identifier.citedreferenceO'Connor R, O'Sullivan JF, O'Kennedy R. The pharmacology, metabolism and chemistry of clofazimine. Drug Metab Rev 1995; 27: 591 – 614.en_US
dc.identifier.citedreferenceVandeputte D, Jacob W, Van Grieken R, Boddingius J. Study of intracellular deposition of the anti‐leprosy drug clofazimine in mouse spleen using laser microprobe mass analysis. Biol Mass Spectrom 1993; 22: 221 – 225.en_US
dc.identifier.citedreferenceMcDougall AC, Horsfall WR, Hede JE, Chaplin AJ. Splenic infarction and tissue accumulation of crystals associated with the use of clofazimine (Lamprene; B663) in the treatment of pyoderma gangrenosum. Br J Dermatol 1980; 102: 227 – 230.en_US
dc.identifier.citedreferenceKeswani RK, Baik J, Yeomans L, Hitzman C, Johnson A, Pawate A, Kenis PJA, Rodríguez‐Hornedo N, Stringer KA, Rosania GR. Chemical analysis of drug biocrystals: A role for counterion transport pathways in intracellular drug disposition. Mol Pharm (in press). doi: 10.1021/acs.molpharmaceut.5b00032.en_US
dc.identifier.citedreferenceHornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847 – 556.en_US
dc.identifier.citedreferenceHerd HL, Bartlett KT, Gustafson Ja, McGill LD, Ghandehari H. Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 2015; 53: 574 – 582.en_US
dc.identifier.citedreferenceMartinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout‐associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237 – 241.en_US
dc.identifier.citedreferenceNadra I, Mason JC, Philippidis P, Florey O, Smythe CDW, McCarthy GM, Landis RC, Haskard DO. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: A vicious cycle of inflammation and arterial calcification? Circ Res 2005; 96: 1248 – 1256.en_US
dc.identifier.citedreferenceRensburg CEJ, Van, Anderson R O'Sullivan JF. Riminophenazine compounds: Pharmacology potential and anti‐neoplastic. Crit Rev Oncol 1997; 25: 55 – 67.en_US
dc.identifier.citedreferenceYoon GS, Sud S, Keswani RK, Standiford TJ, Stringer KA, Rosania GR. Phagocytosed clofazimine biocrystals can modulate innate immune signaling by inhibiting TNFα and boosting IL‐1RA secretion. Mol Pharm (in press). doi: 10.1021/acs.molpharmaceut.5b00035.en_US
dc.identifier.citedreferenceMorrison N, Marley G. The mode of action of clofazimine DNA binding studies. Int J Lepr 1976; 44: 133 – 134.en_US
dc.identifier.citedreferenceZhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008; 9: 1 – 18.en_US
dc.identifier.citedreferenceLee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, Furlong J, Gasparetto M, Goldberg M, Goralczyk EM, et al. MIFlowCyt: The minimum information about a flow cytometry experiment. Cytom A 2008; 73: 926 – 930.en_US
dc.identifier.citedreferenceConalty ML, Jackson RD. Uptake by reticulo‐endothelial cells of the riminophenazine B.663. Br J Exp Pathol 1962; 43: 650 – 654.en_US
dc.identifier.citedreferenceSandler ED, Ng VL, Hadley WK. Clofazimine crystals in alveolar macrophages from a patient with the acquired immunodeficiency syndrome. Arch Pathol Lab Med 1992; 116: 541 – 543.en_US
dc.identifier.citedreferenceHarbeck RJ, Worthen GS, Lebo TD, Peloquin CA. Clofazimine crystals in the cytoplasm of pulmonary macrophages. Ann Pharmacother 1999; 33: 250.en_US
dc.identifier.citedreferenceMutlu M, Budinger GRS, Perlman H. Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am J Respir Cell Mol Biol 2013; 49: 503 – 510.en_US
dc.identifier.citedreferenceVan Rensburg CEJ, Joont GK, O'Sullivan JF, Anderson R. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother 1992; 36: 2729 – 2735.en_US
dc.identifier.citedreferenceReddy VM, O'Sullivan JF, Gangadharam PRJ. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother 1999; 43: 615 – 623.en_US
dc.identifier.citedreferenceDegang Y, Nakamura K, Akama T, Ishido Y. Leprosy as a model of immunity. Future Microbiol 2014; 9: 43 – 54.en_US
dc.identifier.citedreferenceScollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev 2006; 19: 338 – 381.en_US
dc.identifier.citedreferenceBarry VC, Belton JG, Conalty ML, Denneny JM, Edward DW O'Sullivan JF, Twomey D Winder F. A new series of phenazines (rimino‐compounds) with high antituberculosis activity. Nature 1957; 179: 1013 – 1015.en_US
dc.identifier.citedreferenceDey T, Brigden G, Cox H, Shubber Z, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug‐resistant tuberculosis: A systematic review and meta‐analysis. J Antimicrob Chemother 2013; 68: 284 – 293.en_US
dc.identifier.citedreferenceTolentino JG, Rodriquez JN, Abalos RM. Controlled long‐term therapy of leprosy with B663 (lamprene, clofazimine) compared with DDS. Int J Lepr Other Mycobact Dis 1974; 42: 416 – 418.en_US
dc.identifier.citedreferenceBelaube P, Devaux J, Pizzi M, Boutboul R, Privat Y. Small bowel deposition of crystals associated with the use of clofazimine (lamprene) in the treatment of prurigo nodularis. Int J Lepr Other Mycobact Dis 1983; 51: 328 – 330.en_US
dc.identifier.citedreferenceKling J. Measure for measure. Nature 2015; 518: 439 – 443.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.