Show simple item record

Identification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusers

dc.contributor.authorBannon, Michael J.en_US
dc.contributor.authorSavonen, Candace L.en_US
dc.contributor.authorJia, Huien_US
dc.contributor.authorDachet, Fabienen_US
dc.contributor.authorHalter, Steven D.en_US
dc.contributor.authorSchmidt, Carl J.en_US
dc.contributor.authorLipovich, Leonarden_US
dc.contributor.authorKapatos, Gregoryen_US
dc.date.accessioned2015-10-07T20:42:44Z
dc.date.available2016-12-01T14:33:06Zen
dc.date.issued2015-10en_US
dc.identifier.citationBannon, Michael J.; Savonen, Candace L.; Jia, Hui; Dachet, Fabien; Halter, Steven D.; Schmidt, Carl J.; Lipovich, Leonard; Kapatos, Gregory (2015). "Identification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusers." Journal of Neurochemistry 135(1): 50-59.en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/113712
dc.description.abstractMaintenance of the drug‐addicted state is thought to involve changes in gene expression in different neuronal cell types and neural circuits. Midbrain dopamine (DA) neurons in particular mediate numerous responses to drugs of abuse. Long noncoding RNAs (lncRNAs) regulate CNS gene expression through a variety of mechanisms, but next to nothing is known about their role in drug abuse. The proportion of lncRNAs that are primate‐specific provides a strong rationale for their study in human drug abusers. In this study, we determined a profile of dysregulated putative lncRNAs through the analysis of postmortem human midbrain specimens from chronic cocaine abusers and well‐matched control subjects (n = 11 in each group) using a custom lncRNA microarray. A dataset comprising 32 well‐annotated lncRNAs with independent evidence of brain expression and robust differential expression in cocaine abusers is presented. For a subset of these lncRNAs, differential expression was validated by quantitative real‐time PCR and cellular localization determined by in situ hybridization histochemistry. Examples of lncRNAs exhibiting DA cell‐specific expression, different subcellular distributions, and covariance of expression with known cocaine‐regulated protein‐coding genes were identified. These findings implicate lncRNAs in the cellular responses of human DA neurons to chronic cocaine abuse.Long noncoding RNAs (lncRNAs) regulate the expression of protein‐coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up‐regulated antisense lncRNA, tumor necrosis factor receptor‐associated factor 3‐interacting protein 2‐antisense 1 (TRAF3IP2‐AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein‐coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2‐AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).Long noncoding RNAs (lncRNAs) regulate the expression of protein‐coding genes, but little is known about their potential role in drug abuse. In this study, we identified lncRNAs differentially expressed in human cocaine abusers' midbrains. One up‐regulated antisense lncRNA, tumor necrosis factor receptor‐associated factor 3‐interacting protein 2‐antisense 1 (TRAF3IP2‐AS1), was found predominantly in the nucleus of human dopamine (DA) neurons, whereas the related TRAF3IP2 protein‐coding transcript was distributed throughout these cells. The abundances of these transcripts were significantly correlated (left) suggesting that TRAF3IP2‐AS1 may regulate TRAF3IP2 gene expression, perhaps through local chromatin changes at this locus (right).en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherOxford University Pressen_US
dc.subject.othergene expressionen_US
dc.subject.otherlong noncoding RNAen_US
dc.subject.otherpostmortemen_US
dc.subject.othercocaineen_US
dc.subject.otherdopamineen_US
dc.subject.otherdrug abuseen_US
dc.titleIdentification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/1/jnc13255.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/2/jnc13255-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/113712/3/jnc13255_am.pdf
dc.identifier.doi10.1111/jnc.13255en_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceMichelhaugh S. K., Lipovich L., Blythe J., Jia H., Kapatos G. and Bannon M. J. ( 2011 ) Mining Affymetrix microarray data for long noncoding RNAs: altered expression in the nucleus accumbens of heroin abusers. J. Neurochem. 116, 459 – 466.en_US
dc.identifier.citedreferenceDerrien T., Johnson R., Bussotti G. et al. ( 2012 ) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775 – 1789.en_US
dc.identifier.citedreferenceEncode Project Consortium ( 2012 ) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57 – 74.en_US
dc.identifier.citedreferenceFANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest A. R., Kawai H., Rehli M. et al. ( 2014 ) A promoter‐level mammalian expression atlas. Nature 507, 462 – 470.en_US
dc.identifier.citedreferenceFeng J. and Nestler E. J. ( 2013 ) Epigenetic mechanisms of drug addiction. Curr. Opin. Neurobiol. 23, 521 – 528.en_US
dc.identifier.citedreferenceGuttman M. and Rinn J. L. ( 2012 ) Modular regulatory principles of large noncoding RNAs. Nature 482, 339 – 346.en_US
dc.identifier.citedreferenceHawrylycz M. J., Lein E. S., Guillozet‐Bongaarts A. L. et al. ( 2012 ) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391 – 399.en_US
dc.identifier.citedreferenceJia H., Osak M., Bogu G. K., Stanton L. W., Johnson R. and Lipovich L. ( 2010 ) Genome‐wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16, 1478 – 1487.en_US
dc.identifier.citedreferenceJiang Q., Ma R., Wang J. et al. ( 2015 ) LncRNA2Function: a comprehensive resource for functional investigation of human lncRNAs based on RNA‐seq data. BMC Genom. 16 ( Suppl 3 ), S2.en_US
dc.identifier.citedreferenceJohnson M. B., Kawasawa Y. I., Mason C. E. et al. ( 2009 ) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494 – 509.en_US
dc.identifier.citedreferenceJohnson M. M., David J. A., Michelhaugh S. K., Schmidt C. J. and Bannon M. J. ( 2012 ) Increased heat shock protein 70 gene expression in the brains of cocaine‐related fatalities may be reflective of postdrug survival and intervention rather than excited delirium. J. Forensic Sci. 57, 1519 – 1523.en_US
dc.identifier.citedreferenceKhorkova O., Myers A. J., Hsiao J. and Wahlestedt C. ( 2014 ) Natural antisense transcripts. Hum. Mol. Genet. 23, R54 – R63.en_US
dc.identifier.citedreferenceKoob G. F. and Volkow N. D. ( 2010 ) Neurocircuitry of addiction. Neuropsychopharmacology 35, 217 – 238.en_US
dc.identifier.citedreferenceLin M., Pedrosa E., Shah A., Hrabovsky A., Maqbool S., Zheng D. and Lachman H. M. ( 2011 ) RNA‐Seq of human neurons derived from iPS cells reveals candidate long noncoding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS ONE 6, e23356.en_US
dc.identifier.citedreferenceLipovich L., Johnson R. and Lin C. Y. ( 2010 ) MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non‐protein‐coding RNA. Biochim. Biophys. Acta 1799, 597 – 615.en_US
dc.identifier.citedreferenceLipovich L., Dachet F., Cai J., Bagla S., Balan K., Jia H. and Loeb J. A. ( 2012 ) Activity‐dependent human brain coding/noncoding gene regulatory networks. Genetics 192, 1133 – 1148.en_US
dc.identifier.citedreferenceMercer T. R. and Mattick J. S. ( 2013 ) Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300 – 307.en_US
dc.identifier.citedreferenceModarresi F., Faghihi M. A., Lopez‐Toledano M. A., Fatemi R. P., Magistri M., Brothers S. P., van der Brug M. P. and Wahlestedt C. ( 2012 ) Inhibition of natural antisense transcripts in vivo results in gene‐specific transcriptional upregulation. Nat. Biotechnol. 30, 453 – 459.en_US
dc.identifier.citedreferenceNg S. Y., Lin L., Soh B. S. and Stanton L. W. ( 2013 ) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 29, 461 – 468.en_US
dc.identifier.citedreferenceOkvist A., Fagergren P., Whittard J. et al. ( 2011 ) Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers. Biol. Psychiatry 69, 245 – 252.en_US
dc.identifier.citedreferencePastori C. and Wahlestedt C. ( 2012 ) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol. 9, 860 – 870.en_US
dc.identifier.citedreferencePunzi G., Ursini G., Shin J. H., Kleinman J. E., Hyde T. M. and Weinberger D. R. ( 2014 ) Increased expression of MARCKS in post‐mortem brain of violent suicide completers is related to transcription of a long, noncoding, antisense RNA. Mol. Psychiatry 19, 1057 – 1059.en_US
dc.identifier.citedreferenceRusso S. J., Wilkinson M. B., Mazei‐Robison M. S. et al. ( 2009 ) Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529 – 3537.en_US
dc.identifier.citedreferenceSchroeder A., Mueller O., Stocker S. et al. ( 2006 ) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3.en_US
dc.identifier.citedreferenceStan A. D., Ghose S., Gao X. M., Roberts R. C., Lewis‐Amezcua K., Hatanpaa K. J. and Tamminga C. A. ( 2006 ) Human postmortem tissue: what quality markers matter? Brain Res. 1123, 1 – 11.en_US
dc.identifier.citedreferenceValente A. J., Sakamuri S. S., Siddesha J. M., Yoshida T., Gardner J. D., Prabhu R., Siebenlist U. and Chandrasekar B. ( 2013 ) TRAF3IP2 mediates interleukin‐18‐induced cardiac fibroblast migration and differentiation. Cell. Signal. 25, 2176 – 2184.en_US
dc.identifier.citedreferenceVolkow N. D., Wang G. J., Fowler J. S., Tomasi D. and Telang F. ( 2011 ) Addiction: beyond dopamine reward circuitry. Proc. Natl Acad. Sci. 108, 15037 – 15042.en_US
dc.identifier.citedreferenceWang E. T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S. F., Schroth G. P. and Burge C. B. ( 2008 ) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470 – 476.en_US
dc.identifier.citedreferenceWight M. and Werner A. ( 2013 ) The functions of natural antisense transcripts. Essays Biochem. 54, 91 – 101.en_US
dc.identifier.citedreferenceAlbertson D. N., Pruetz B., Schmidt C. J., Kuhn D. M., Kapatos G. and Bannon M. J. ( 2004 ) Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J. Neurochem. 88, 1211 – 1219.en_US
dc.identifier.citedreferenceAlbertson D. N., Schmidt C. J., Kapatos G. and Bannon M. J. ( 2006 ) Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology 31, 2304 – 2312.en_US
dc.identifier.citedreferenceAndersson R., Gebhard C., Miguel‐Escalada I. et al. ( 2014 ) An atlas of active enhancers across human cell types and tissues. Nature 507, 455 – 461.en_US
dc.identifier.citedreferenceBannon M. J. and Whitty C. J. ( 1997 ) Age‐related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48, 969 – 977.en_US
dc.identifier.citedreferenceBannon M. J., Johnson M. M., Michelhaugh S. K., Hartley Z. J., Halter S. D., David J. A., Kapatos G. and Schmidt C. J. ( 2014 ) A molecular profile of cocaine abuse includes the differential expression of genes that regulate transcription, chromatin, and dopamine cell phenotype. Neuropsychopharmacology 39, 2191 – 2199.en_US
dc.identifier.citedreferenceBannon M. J., Savonen C. L., Hartley Z. J., Johnson M. M. and Schmidt C. J. ( 2015 ) Investigating the potential influence of cause of death and cocaine levels on the differential expression of genes associated with cocaine abuse. PLoS ONE 10, e0117580.en_US
dc.identifier.citedreferenceBu Q., Hu Z., Chen F. et al. ( 2012 ) Transcriptome analysis of long noncoding RNAs of the nucleus accumbens in cocaine‐conditioned mice. J. Neurochem. 123, 790 – 799.en_US
dc.identifier.citedreferenceChuang H. C., Lan J. L., Chen D. Y. et al. ( 2011 ) The kinase GLK controls autoimmunity and NF‐kappaB signaling by activating the kinase PKC‐theta in T cells. Nat. Immunol. 12, 1113 – 1118.en_US
dc.identifier.citedreferenceClark B. S. and Blackshaw S. ( 2014 ) Long noncoding RNA‐dependent transcriptional regulation in neuronal development and disease. Front. Genet. 5, 164.en_US
dc.identifier.citedreferenceDeArmond S. J., Fusco M. M. and Dewey M. M. ( 1989 ) Structure of the Human Brain: A Photographic Atlas, 3rd edn. Oxford University Press, New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.