Show simple item record

Regulation of autophagy: Modulation of the size and number of autophagosomes

dc.contributor.authorJin, Meiyanen_US
dc.contributor.authorKlionsky, Daniel J.en_US
dc.date.accessioned2016-01-04T20:51:30Z
dc.date.available2016-01-04T20:51:30Z
dc.date.issued2014-08-01en_US
dc.identifier.citationJin, Meiyan; Klionsky, Daniel J. (2014). "Regulation of autophagy: Modulation of the size and number of autophagosomes." FEBS Letters 588(15): 2457-2463.en_US
dc.identifier.issn0014-5793en_US
dc.identifier.issn1873-3468en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/116304
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCvten_US
dc.subject.othercytoplasm-to-vacuole targetingen_US
dc.subject.otherTFEBen_US
dc.subject.othertranscription factor EBen_US
dc.subject.otherUPSen_US
dc.subject.otherubiquitin–proteasome systemen_US
dc.subject.otherLysosomeen_US
dc.subject.otherPhagophoreen_US
dc.subject.otherStressen_US
dc.subject.otherVacuoleen_US
dc.subject.otherYeasten_US
dc.subject.otherAutophagyen_US
dc.subject.otherApe1en_US
dc.subject.otheraminopeptidase Ien_US
dc.subject.otherAtgen_US
dc.subject.otherautophagy-relateden_US
dc.subject.otherChIPen_US
dc.subject.otherchromatin immunoprecipitationen_US
dc.titleRegulation of autophagy: Modulation of the size and number of autophagosomesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumLife Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United Statesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/116304/1/feb2s0014579314004748.pdf
dc.identifier.doi10.1016/j.febslet.2014.06.015en_US
dc.identifier.sourceFEBS Lettersen_US
dc.identifier.citedreferenceJ. Zhao, J.J. Brault, A. Schild, P. Cao, M. Sandri, S. Schiaffino, S.H. Lecker, A.L. Goldberg, FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab., 6,( 2007 ), 472 – 483.en_US
dc.identifier.citedreferenceD. Chen, S. Pang, X. Feng, W. Huang, R.G. Hawley, B. Yan, Genetic analysis of the ATG7 gene promoter in sporadic Parkinson's disease. Neurosci. Lett., 534,( 2013 ), 193 – 198.en_US
dc.identifier.citedreferenceH. Liu, Z. He, T. von Rutte, S. Yousefi, R.E. Hunger, H.U. Simon, Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci. Transl. Med., 5,( 2013 ), 202ra123 –en_US
dc.identifier.citedreferenceJ. Wang, X.L. Pan, L.J. Ding, D.Y. Liu, L. Da-Peng, T. Jin, Aberrant expression of Beclin-1 and LC3 correlates with poor prognosis of human hypopharyngeal squamous cell carcinoma. PLoS ONE, 8,( 2013 ), e69038 –en_US
dc.identifier.citedreferenceY.K. Jo, S.C. Kim, I.J. Park, S.J. Park, D.H. Jin, S.W. Hong, D.H. Cho, J.C. Kim, Increased expression of ATG10 in colorectal cancer is associated with lymphovascular invasion and lymph node metastasis. PLoS ONE, 7,( 2012 ), e52705 –en_US
dc.identifier.citedreferenceA.E. Webb, A. Brunet, FOXO transcription factors: key regulators of cellular quality control. Trends Biochem. Sci., 39,( 2014 ), 159 – 169.en_US
dc.identifier.citedreferenceC. Mammucari, G. Milan, V. Romanello, E. Masiero, R. Rudolf, P. Del Piccolo, S.J. Burden, R. Di Lisi, C. Sandri, J. Zhao, A.L. Goldberg, S. Schiaffino, M. Sandri, FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab., 6,( 2007 ), 458 – 471.en_US
dc.identifier.citedreferenceP. Xu, M. Das, J. Reilly, R.J. Davis, JNK regulates FoxO-dependent autophagy in neurons. Genes Dev., 25,( 2011 ), 310 – 322.en_US
dc.identifier.citedreferenceF. Demontis, N. Perrimon, FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell, 143,( 2010 ), 813 – 825.en_US
dc.identifier.citedreferenceB.J. Venters, S. Wachi, T.N. Mavrich, B.E. Andersen, P. Jena, A.J. Sinnamon, P. Jain, N.S. Rolleri, C. Jiang, C. Hemeryck-Walsh, B.F. Pugh, A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol. Cell, 41,( 2011 ), 480 – 492.en_US
dc.identifier.citedreferenceC. Settembre, C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D.C. Rubinsztein, A. Ballabio, TFEB links autophagy to lysosomal biogenesis. Science, 332,( 2011 ), 1429 – 1433.en_US
dc.identifier.citedreferenceM. Palmieri, S. Impey, H. Kang, A. di Ronza, C. Pelz, M. Sardiello, A. Ballabio, Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet., 20,( 2011 ), 3852 – 3866.en_US
dc.identifier.citedreferenceS. Chauhan, J.G. Goodwin, G. Manyam, J. Wang, A.M. Kamat, D.D. Boyd, ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell, 50,( 2013 ), 16 – 28.en_US
dc.identifier.citedreferenceG. Bellot, R. Garcia-Medina, P. Gounon, J. Chiche, D. Roux, J. Pouyssegur, N.M. Mazure, Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 29,( 2009 ), 2570 – 2581.en_US
dc.identifier.citedreferenceJ. Shaw, N. Yurkova, T. Zhang, H. Gang, F. Aguilar, D. Weidman, C. Scramstad, H. Weisman, L.A. Kirshenbaum, Antagonism of E2F-1 regulated Bnip3 transcription by NF-κB is essential for basal cell survival. Proc. Natl. Acad. Sci. U.S.A., 105,( 2008 ), 20734 – 20739.en_US
dc.identifier.citedreferenceS. Polager, M. Ofir, D. Ginsberg, E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene, 27,( 2008 ), 4860 – 4864.en_US
dc.identifier.citedreferenceT. Copetti, C. Bertoli, E. Dalla, F. Demarchi, C. Schneider, P65/RelA modulates BECN1 transcription and autophagy. Mol. Cell. Biol., 29,( 2009 ), 2594 – 2608.en_US
dc.identifier.citedreferenceT.F. Chan, P.G. Bertram, W. Ai, X.F. Zheng, Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J. Biol. Chem., 276,( 2001 ), 6463 – 6467.en_US
dc.identifier.citedreferenceA. Bánréti, T. Lukácsovich, G. Csikós, M. Erdélyi, M. Sass, PP2A regulates autophagy in two alternative ways in Drosophila. Autophagy, 8,( 2012 ), 623 – 636.en_US
dc.identifier.citedreferenceY.A. Kang, R. Sanalkumar, H. O'Geen, A.K. Linnemann, C.J. Chang, E.E. Bouhassira, P.J. Farnham, S. Keles, E.H. Bresnick, Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol., 32,( 2012 ), 226 – 239.en_US
dc.identifier.citedreferenceS. Kobayashi, P. Volden, D. Timm, K. Mao, X. Xu, Q. Liang, Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J. Biol. Chem., 285,( 2010 ), 793 – 804.en_US
dc.identifier.citedreferenceF. Pietrocola, V. Izzo, M. Niso-Santano, E. Vacchelli, L. Galluzzi, M.C. Maiuri, G. Kroemer, Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol., 23,( 2013 ), 310 – 322.en_US
dc.identifier.citedreferenceJ. Fullgrabe, D.J. Klionsky, B. Joseph, The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol., 15,( 2014 ), 65 – 74.en_US
dc.identifier.citedreferenceM. Baba, M. Osumi, S.V. Scott, D.J. Klionsky, Y. Ohsumi, Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol., 139,( 1997 ), 1687 – 1695.en_US
dc.identifier.citedreferenceK. Mao, K. Wang, X. Liu, D.J. Klionsky, The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell, 26,( 2013 ), 9 – 18.en_US
dc.identifier.citedreferenceK. Mao, X. Liu, Y. Feng, D.J. Klionsky, The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy, 10,( 2014 ), 652 – 661.en_US
dc.identifier.citedreferenceJ.E. Vance, G. Tasseva, Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta, 1831,( 2013 ), 543 – 554.en_US
dc.identifier.citedreferenceC.R. Bartholomew, T. Suzuki, Z. Du, S.K. Backues, M. Jin, M.A. Lynch-Day, M. Umekawa, A. Kamath, M. Zhao, Z. Xie, K. Inoki, D.J. Klionsky, Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc. Natl. Acad. Sci. U.S.A., 109,( 2012 ), 11206 – 11210.en_US
dc.identifier.citedreferenceD.J. Klionsky, R. Cueva, D.S. Yaver, Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol., 119,( 1992 ), 287 – 299.en_US
dc.identifier.citedreferenceJ. Geng, M. Baba, U. Nair, D.J. Klionsky, Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell Biol., 182,( 2008 ), 129 – 140.en_US
dc.identifier.citedreferenceM. Jin, D. He, S.K. Backues, M.A. Freeberg, X. Liu, J.K. Kim, D.J. Klionsky, Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation, Curr. Biol. (2014) in press.en_US
dc.identifier.citedreferenceR.L. Knorr, R. Dimova, R. Lipowsky, Curvature of double-membrane organelles generated by changes in membrane size and composition. PLoS ONE, 7,( 2012 ), e32753 –en_US
dc.identifier.citedreferenceK. Suzuki, M. Akioka, C. Kondo-Kakuta, H. Yamamoto, Y. Ohsumi, Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci., 126,( 2013 ), 2534 – 2544.en_US
dc.identifier.citedreferenceZ. Xie, D.J. Klionsky, Autophagosome formation: core machinery and adaptations. Nat. Cell Biol., 9,( 2007 ), 1102 – 1109.en_US
dc.identifier.citedreferenceF. Reggiori, D.J. Klionsky, Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194,( 2013 ), 341 – 361.en_US
dc.identifier.citedreferenceT. Noda, K. Suzuki, Y. Ohsumi, Yeast autophagosomes: de novo formation of a membrane structure. Trends Cell Biol., 12,( 2002 ), 231 – 235.en_US
dc.identifier.citedreferenceA.L. Kovács, Z. Pálfia, G. Réz, T. Vellai, J. Kovács, Sequestration revisited: integrating traditional electron microscopy, de novo assembly and new results. Autophagy, 3,( 2007 ), 655 – 662.en_US
dc.identifier.citedreferenceJ. Sawa-Makarska, C. Abert, J. Romanov, B. Zens, I. Ibiricu, S. Martens, Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat. Cell Biol., 16,( 2014 ), 425 – 433.en_US
dc.identifier.citedreferenceD. Mijaljica, T.Y. Nazarko, J.H. Brumell, W.-P. Huang, M. Komatsu, M. Prescott, A. Simonsen, A. Yamamoto, H. Zhang, D.J. Klionsky, R.J. Devenish, Receptor protein complexes are in control of autophagy. Autophagy, 8,( 2012 ), 1701 – 1705.en_US
dc.identifier.citedreferenceM.A. Lynch-Day, D.J. Klionsky, The Cvt pathway as a model for selective autophagy. FEBS Lett., 584,( 2010 ), 1359 – 1366.en_US
dc.identifier.citedreferenceK.D. MacIsaac, T. Wang, D.B. Gordon, D.K. Gifford, G.D. Stormo, E. Fraenkel, An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 7,( 2006 ), 113 –en_US
dc.identifier.citedreferenceN. Mizushima, The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol., 22,( 2010 ), 132 – 139.en_US
dc.identifier.citedreferenceZ. Yang, D.J. Klionsky, Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22,( 2010 ), 124 – 131.en_US
dc.identifier.citedreferenceT. Yorimitsu, S. Zaman, J.R. Broach, D.J. Klionsky, Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell, 18,( 2007 ), 4180 – 4189.en_US
dc.identifier.citedreferenceA. Matsuura, M. Tsukada, Y. Wada, Y. Ohsumi, Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192,( 1997 ), 245 – 250.en_US
dc.identifier.citedreferenceM. Straub, M. Bredschneider, M. Thumm, AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J. Bacteriol., 179,( 1997 ), 3875 – 3883.en_US
dc.identifier.citedreferenceY. Kamada, T. Funakoshi, T. Shintani, K. Nagano, M. Ohsumi, Y. Ohsumi, Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol., 150,( 2000 ), 1507 – 1513.en_US
dc.identifier.citedreferenceY. Kabeya, Y. Kamada, M. Baba, H. Takikawa, M. Sasaki, Y. Ohsumi, Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell, 16,( 2005 ), 2544 – 2553.en_US
dc.identifier.citedreferenceY. Cao, U. Nair, K. Yasumura-Yorimitsu, D.J. Klionsky, A multiple ATG gene knockout strain for yeast two-hybrid analysis. Autophagy, 5,( 2009 ), 699 – 705.en_US
dc.identifier.citedreferenceH. Cheong, U. Nair, J. Geng, D.J. Klionsky, The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell, 19,( 2008 ), 668 – 681.en_US
dc.identifier.citedreferenceK. Suzuki, Y. Kubota, T. Sekito, Y. Ohsumi, Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12,( 2007 ), 209 – 218.en_US
dc.identifier.citedreferenceK. Mao, L.H. Chew, Y. Inoue-Aono, H. Cheong, U. Nair, H. Popelka, C.K. Yip, D.J. Klionsky, Atg29 phosphorylation regulates coordination of the Atg17–Atg31–Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc. Natl. Acad. Sci. U.S.A., 110,( 2013 ), E2875 – E2884.en_US
dc.identifier.citedreferenceY.Y. Yeh, K. Wrasman, P.K. Herman, Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics, 185,( 2010 ), 871 – 882.en_US
dc.identifier.citedreferenceR.C. Russell, Y. Tian, H. Yuan, H.W. Park, Y.Y. Chang, J. Kim, H. Kim, T.P. Neufeld, A. Dillin, K.-L. Guan, ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol., 15,( 2013 ), 741 – 750.en_US
dc.identifier.citedreferenceD. Papinski, M. Schuschnig, W. Reiter, L. Wilhelm, C.A. Barnes, A. Maiolica, I. Hansmann, T. Pfaffenwimmer, M. Kijanska, I. Stoffel, S.S. Lee, A. Brezovich, J.H. Lou, B.E. Turk, R. Aebersold, G. Ammerer, M. Peter, C. Kraft, Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell, 53,( 2014 ), 471 – 483.en_US
dc.identifier.citedreferenceY. Araki, W.C. Ku, M. Akioka, A.I. May, Y. Hayashi, F. Arisaka, Y. Ishihama, Y. Ohsumi, Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J. Cell Biol., 203,( 2013 ), 299 – 313.en_US
dc.identifier.citedreferenceC.C. Jao, M.J. Ragusa, R.E. Stanley, J.H. Hurley, A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc. Natl. Acad. Sci. U.S.A., 110,( 2013 ), 5486 – 5491.en_US
dc.identifier.citedreferenceA. Kihara, T. Noda, N. Ishihara, Y. Ohsumi, Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol., 152,( 2001 ), 519 – 530.en_US
dc.identifier.citedreferenceG. Juhasz, J.H. Hill, Y. Yan, M. Sass, E.H. Baehrecke, J.M. Backer, T.P. Neufeld, The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol., 181,( 2008 ), 655 – 666.en_US
dc.identifier.citedreferenceP.E. Stromhaug, F. Reggiori, J. Guan, C.-W. Wang, D.J. Klionsky, Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell, 15,( 2004 ), 3553 – 3566.en_US
dc.identifier.citedreferenceY. Ichimura, T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi, N. Ishihara, N. Mizushima, I. Tanida, E. Kominami, M. Ohsumi, T. Noda, Y. Ohsumi, A ubiquitin-like system mediates protein lipidation. Nature, 408,( 2000 ), 488 – 492.en_US
dc.identifier.citedreferenceN. Mizushima, T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M.D. George, D.J. Klionsky, M. Ohsumi, Y. Ohsumi, A protein conjugation system essential for autophagy. Nature, 395,( 1998 ), 395 – 398.en_US
dc.identifier.citedreferenceT. Shintani, N. Mizushima, Y. Ogawa, A. Matsuura, T. Noda, Y. Ohsumi, Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J., 18,( 1999 ), 5234 – 5241.en_US
dc.identifier.citedreferenceN. Mizushima, T. Noda, Y. Ohsumi, Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J., 18,( 1999 ), 3888 – 3896.en_US
dc.identifier.citedreferenceA. Kuma, N. Mizushima, N. Ishihara, Y. Ohsumi, Formation of the approximately 350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem., 277,( 2002 ), 18619 – 18625.en_US
dc.identifier.citedreferenceT. Hanada, N.N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka, T. Takao, F. Inagaki, Y. Ohsumi, The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem., 282,( 2007 ), 37298 – 37302.en_US
dc.identifier.citedreferenceY. Cao, H. Cheong, H. Song, D.J. Klionsky, In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol., 182,( 2008 ), 703 – 713.en_US
dc.identifier.citedreferenceN. Mizushima, A. Yamamoto, M. Hatano, Y. Kobayashi, Y. Kabeya, K. Suzuki, T. Tokuhisa, Y. Ohsumi, T. Yoshimori, Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol., 152,( 2001 ), 657 – 668.en_US
dc.identifier.citedreferenceW.-P. Huang, S.V. Scott, J. Kim, D.J. Klionsky, The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem., 275,( 2000 ), 5845 – 5851.en_US
dc.identifier.citedreferenceT. Kirisako, Y. Ichimura, H. Okada, Y. Kabeya, N. Mizushima, T. Yoshimori, M. Ohsumi, T. Takao, T. Noda, Y. Ohsumi, The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol., 151,( 2000 ), 263 – 276.en_US
dc.identifier.citedreferenceT. Shintani, W.-P. Huang, P.E. Stromhaug, D.J. Klionsky, Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell, 3,( 2002 ), 825 – 837.en_US
dc.identifier.citedreferenceZ. Xie, U. Nair, D.J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell, 19,( 2008 ), 3290 – 3298.en_US
dc.identifier.citedreferenceA. Kaufmann, V. Beier, H.G. Franquelim, T. Wollert, Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell, 156,( 2014 ), 469 – 481.en_US
dc.identifier.citedreferenceT. Noda, J. Kim, W.-P. Huang, M. Baba, C. Tokunaga, Y. Ohsumi, D.J. Klionsky, Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol., 148,( 2000 ), 465 – 480.en_US
dc.identifier.citedreferenceF. Reggiori, K.A. Tucker, P.E. Stromhaug, D.J. Klionsky, The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell, 6,( 2004 ), 79 – 90.en_US
dc.identifier.citedreferenceM. Mari, J. Griffith, E. Rieter, L. Krishnappa, D.J. Klionsky, F. Reggiori, An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J. Cell Biol., 190,( 2010 ), 1005 – 1022.en_US
dc.identifier.citedreferenceT. Sekito, T. Kawamata, R. Ichikawa, K. Suzuki, Y. Ohsumi, Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14,( 2009 ), 525 – 538.en_US
dc.identifier.citedreferenceW.-L. Yen, J.E. Legakis, U. Nair, D.J. Klionsky, Atg27 is required for autophagy-dependent cycling of Atg9. Mol. Biol. Cell, 18,( 2007 ), 581 – 593.en_US
dc.identifier.citedreferenceF. Reggiori, T. Shintani, U. Nair, D.J. Klionsky, Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 1,( 2005 ), 101 – 109.en_US
dc.identifier.citedreferenceH. Yamamoto, S. Kakuta, T.M. Watanabe, A. Kitamura, T. Sekito, C. Kondo-Kakuta, R. Ichikawa, M. Kinjo, Y. Ohsumi, Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol., 198,( 2012 ), 219 – 233.en_US
dc.identifier.citedreferenceM.J. Ragusa, R.E. Stanley, J.H. Hurley, Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151,( 2012 ), 1501 – 1512.en_US
dc.identifier.citedreferenceR.A. Nixon, The role of autophagy in neurodegenerative disease. Nat. Med., 19,( 2013 ), 983 – 997.en_US
dc.identifier.citedreferenceA. Nakai, O. Yamaguchi, T. Takeda, Y. Higuchi, S. Hikoso, M. Taniike, S. Omiya, I. Mizote, Y. Matsumura, M. Asahi, K. Nishida, M. Hori, N. Mizushima, K. Otsu, The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med., 13,( 2007 ), 619 – 624.en_US
dc.identifier.citedreferenceD.H. Perlmutter, Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in α-1-antitrypsin deficiency. Cell Death Differ., 16,( 2009 ), 39 – 45.en_US
dc.identifier.citedreferenceV. Deretic, Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr. Opin. Immunol., 24,( 2012 ), 21 – 31.en_US
dc.identifier.citedreferenceA. Kuma, M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori, Y. Ohsumi, T. Tokuhisa, N. Mizushima, The role of autophagy during the early neonatal starvation period. Nature, 432,( 2004 ), 1032 – 1036.en_US
dc.identifier.citedreferenceS. Tsukamoto, A. Kuma, M. Murakami, C. Kishi, A. Yamamoto, N. Mizushima, Autophagy is essential for preimplantation development of mouse embryos. Science, 321,( 2008 ), 117 – 120.en_US
dc.identifier.citedreferenceB. Ravikumar, S. Sarkar, J.E. Davies, M. Futter, M. Garcia-Arencibia, Z.W. Green-Thompson, M. Jimenez-Sanchez, V.I. Korolchuk, M. Lichtenberg, S. Luo, D.C. Massey, F.M. Menzies, K. Moreau, U. Narayanan, M. Renna, F.H. Siddiqi, B.R. Underwood, A.R. Winslow, D.C. Rubinsztein, Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 90,( 2010 ), 1383 – 1435.en_US
dc.identifier.citedreferenceJ. Nedjic, M. Aichinger, N. Mizushima, L. Klein, Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Curr. Opin. Immunol., 21,( 2009 ), 92 – 97.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.