Show simple item record

Effect Of Food And Predators On The Activity Of Four Larval Ranid Frogs

dc.contributor.authorAnholt, Bradley R.en_US
dc.contributor.authorWerner, Earlen_US
dc.contributor.authorSkelly, David K.en_US
dc.date.accessioned2016-02-01T18:48:39Z
dc.date.available2016-02-01T18:48:39Z
dc.date.issued2000-12en_US
dc.identifier.citationAnholt, Bradley R.; Werner, Earl; Skelly, David K. (2000). "Effect Of Food And Predators On The Activity Of Four Larval Ranid Frogs." Ecology 81(12): 3509-3521.en_US
dc.identifier.issn0012-9658en_US
dc.identifier.issn1939-9170en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117029
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRanaen_US
dc.subject.othertrade-offen_US
dc.subject.othermovement speeden_US
dc.subject.otheranuran larvaeen_US
dc.subject.otherantipredator behavioren_US
dc.subject.othergrowth rateen_US
dc.subject.otherpredation risken_US
dc.titleEffect Of Food And Predators On The Activity Of Four Larval Ranid Frogsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherDepartment of Biology, Erindale College, University of Toronto, Ontario, Canadaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117029/1/ecy200081123509.pdf
dc.identifier.doi10.1890/0012-9658(2000)081[3509:EOFAPO]2.0.CO;2en_US
dc.identifier.sourceEcologyen_US
dc.identifier.citedreferenceStein, R. A., and J. J. Magnuson. 1976. Behavioral responses of crayfish to a fish predator. Ecology 57: 751 – 761.en_US
dc.identifier.citedreferenceSih, A. 1987b. Prey refuges and predator–prey stability. Theoretical Population Biology 31: 1 – 12.en_US
dc.identifier.citedreferenceSkellam, J. G. 1958. The mathematical foundations underlying the use of line transects in animal ecology. Biometrics 14: 385 – 400.en_US
dc.identifier.citedreferenceSkelly, D. K. 1997. Tadpole communities. American Scientist 85: 36 – 45.en_US
dc.identifier.citedreferenceSkelly, D. K., E. E. Werner, and S. A. Cortwright. 1999. Long term distributional dynamics of a Michigan amphibian assemblage. Ecology 80: 2326 – 2337.en_US
dc.identifier.citedreferenceSpeakman, J. R. 1986. The optimal search speed of terrestrial predators when feeding on terrestrial prey: a predictive model. Journal of Theoretical Biology 122: 401 – 407.en_US
dc.identifier.citedreferenceS-Plus. 1997. Programmer's Guide. Version 4.0. Data Analysis Products Division, MathSoft, Seattle, Washington, USA.en_US
dc.identifier.citedreferenceStephens, D. W., and J. R. Krebs. 1986. Foraging theory. Princeton University Press, Princeton, New Jersey, USA.en_US
dc.identifier.citedreferenceSutherland, W. J. 1996. From individual behaviour to population ecology. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceTilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey, USA.en_US
dc.identifier.citedreferenceTonn, W. M., C. A. Paszkowski, and I. J. Holopainen. 1992. Piscivory and recruitment: mechanisms structuring prey populations in small lakes. Ecology 73: 951 – 958.en_US
dc.identifier.citedreferenceTravis, J., W. H. Keen, and J. Juilianna. 1985. The role of relative body size in a predator–prey relationship between dragonfly naiads and larval anurans. Oikos 45: 59 – 65.en_US
dc.identifier.citedreferenceVan Buskirk, J., A. McCollum, and E. E. Werner. 1997. Natural selection for environmentally-induced phenotypes in tadpoles. Evolution 52: 1983 – 1992.en_US
dc.identifier.citedreferenceVan Buskirk, J., and R. A. Relyea. 1999. Natural selection for phenotypic plasticity in larval anurans. Biological Journal of the Linnean Society 65: 301 – 328.en_US
dc.identifier.citedreferenceWare, D. M. 1975. Bioenergetics of pelagic fish: theoretical changes in swimming speed and ratio with body size. Journal of the Fisheries Research Board of Canada 30: 787 – 797.en_US
dc.identifier.citedreferenceWassersug, R. J. 1989. Locomotion in amphibian larvae (or “Why aren't tadpoles built like fishes?”). American Zoologist 29: 65 – 84.en_US
dc.identifier.citedreferenceWellborn, G. A., D. K. Skelly, and E. E. Werner. 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337 – 363.en_US
dc.identifier.citedreferenceWerner, E. E. 1991. Nonlethal effects of a predator on competitive interactions between two anuran larvae. Ecology 72: 1709 – 1720.en_US
dc.identifier.citedreferenceWerner, E. E. 1992a. Competitive interactions between wood frog and northern leopard frog larvae: the influence of size and activity. Copeia 1992 26 – 35.en_US
dc.identifier.citedreferenceWerner, E. E. 1992b. Individual behavior and higher-order interactions. American Naturalist 140: S5 – S32.en_US
dc.identifier.citedreferenceWerner, E. E., and B. R. Anholt. 1993. Ecological consequences of the tradeoff between growth and mortality rates mediated by foraging activity. American Naturalist 142: 242 – 272.en_US
dc.identifier.citedreferenceWerner, E. E., and B. R. Anholt. 1996. Predator induced behavioral indirect effects: consequences to competitive interactions in anuran larvae. Ecology 77: 157 – 169.en_US
dc.identifier.citedreferenceWerner, E. E., and J. F. Gilliam. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics. 15: 393 – 425.en_US
dc.identifier.citedreferenceWerner, E. E., J. F. Gilliam, D. J. Hall, and G. G. Mittelbach. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540 – 1548.en_US
dc.identifier.citedreferenceWerner, E. E., and K. S. Glennemeier. 1999. The influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1999 1 – 12.en_US
dc.identifier.citedreferenceAbrams, P. A. 1982. Functional responses of optimal foragers. American Naturalist 120: 382 – 390.en_US
dc.identifier.citedreferenceAbrams, P. A. 1984. Foraging time optimization and interactions in food webs. American Naturalist 124: 80 – 96.en_US
dc.identifier.citedreferenceAbrams, P. A. 1990. The effects of adaptive behavior on the type-2 functional response. Ecology 71: 877 – 885.en_US
dc.identifier.citedreferenceAbrams, P. A. 1991a. Strengths of indirect effects generated by optimal foraging. Oikos 62: 167 – 176.en_US
dc.identifier.citedreferenceAbrams, P. A. 1991b. Life history and the relationship between food availability and foraging effort. Ecology 72: 1242 – 1252.en_US
dc.identifier.citedreferenceAbrams, P. A. 1993a. Why predation rates should not be proportional to predator density. Ecology 74: 726 – 733.en_US
dc.identifier.citedreferenceAbrams, P. A. 1993b. Indirect effects arising from optimal foraging. Pages 255–279 in H. Kawanabe, J. E. Cohen, and K. Iwasaka, editors. Mutualism and community organisation: behavioural, theoretical, and food web approaches. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceAbrams, P. A. 1995. Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. American Naturalist 146: 112 – 134.en_US
dc.identifier.citedreferenceAnholt, B. R. 1997. How should we test for the role of behavior in population dynamics? Evolutionary Ecology 11: 633 – 640.en_US
dc.identifier.citedreferenceAnholt, B. R., D. K. Skelly, and E. E. Werner. 1996. Factors modifying antipredator behavior in larval toads. Herpetologica 52: 301 – 313.en_US
dc.identifier.citedreferenceAnholt, B. R., and E. E. Werner. 1995. Interaction between food availability and predation mortality mediated by adaptive behavior. Ecology 76: 2230 – 2234.en_US
dc.identifier.citedreferenceAnholt, B. R., and E. E. Werner. 1998. Predictable changes in predation mortality as a consequence of changes in food availability and predation risk. Evolutionary Ecology 12: 729 – 738.en_US
dc.identifier.citedreferenceArendt, J. D. 1997. Adaptive intrinsic growth rates: an integration across taxa. Quarterly Review of Biology 72: 149 – 177.en_US
dc.identifier.citedreferenceBrodie, E. D., and D. R. Formanowicz, Jr. 1983. Prey size preference of predators: differential vulnerability of larval anurans. Herpetologica 39: 67 – 75.en_US
dc.identifier.citedreferenceCaldwell, J. P., J. H. Thorp, and T. O. Jervey. 1980. Predator–prey relationships among larval dragonflies, salamanders, and frogs. Oecologia 46: 285 – 289.en_US
dc.identifier.citedreferenceCollins, J. P., and H. M. Wilbur. 1979. Breeding habits and habitats of the amphibians of the Edwin S. George Reserve, Michigan, with notes on the local distribution of fishes. Occasional Papers of the Museum of Zoology, University of Michigan. 686: 1 – 34.en_US
dc.identifier.citedreferenceDunbrack, R. L., and L. A. Giguere. 1987. Adaptive responses to the accelerating costs of movement: a bioenergetic basis for the Type III functional response. American Naturalist 130: 147 – 160.en_US
dc.identifier.citedreferenceEklov, P., and E. E. Werner. 2000. Multiple-predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88: 250 – 258.en_US
dc.identifier.citedreferenceFryxell, J. M., and P. Lundberg. 1998. Individual behavior and community dynamics. Chapman & Hall, London, UK.en_US
dc.identifier.citedreferenceGendron, R. P., and J. E. R. Staddon. 1984. A laboratory simulation of foraging behavior: the effect of search rate on the probability of detecting prey. American Naturalist 124: 407 – 415.en_US
dc.identifier.citedreferenceGerritsen, J., and J. R. Strickler. 1977. Encounter probabilities, and community structure in zooplankton: a mathematical model. Journal of the Fisheries Research Board of Canada 34: 73 – 82.en_US
dc.identifier.citedreferenceGosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183 – 190.en_US
dc.identifier.citedreferenceHorat, P., and R. D. Semlitsch. 1994. Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behavioral Ecology Sociobiology 34: 393 – 401.en_US
dc.identifier.citedreferenceHouston, A. I., J. M. McNamara, and J. M. C. Hutchinson. 1993. General results concerning the trade-off between gaining energy and avoiding predators. Philosophical Transactions of the Royal Society, London 341: 375 – 397.en_US
dc.identifier.citedreferenceIves, A. R., and A. P. Dobson. 1987. Antipredator behavior and the population dynamics of simple predator–prey systems. American Naturalist 130: 431 – 447.en_US
dc.identifier.citedreferenceKohler, S. L., and M. A. McPeek. 1989. Predation risk and the foraging behavior of competing stream insects. Ecology 70: 1811 – 1825.en_US
dc.identifier.citedreferenceLima, S. L. 1998. Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Advances in the Study of Behavior 27: 215 – 290.en_US
dc.identifier.citedreferenceLima, S. L., and L. M. Dill. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619 – 640.en_US
dc.identifier.citedreferenceMatsuda, H., P. A. Abrams, and M. Hori. 1995. The effect of adaptive anti-predator behavior on exploitative competition and mutualism between predators. Oikos 68: 549 – 559.en_US
dc.identifier.citedreferenceMcCollum, S. A., and J. Van Buskirk. 1996. Costs and benefits of a predator-induced polyphenism in the gray tree frog, Hyla chrysocelis. Evolution 50: 583 – 593.en_US
dc.identifier.citedreferenceMcNamara, J. M., and A. I. Houston. 1987. Starvation and predation as factors limiting population size. Ecology 68: 1515 – 1519.en_US
dc.identifier.citedreferenceMcNamara, J. M., and A. I. Houston. 1994. The effect of a change in foraging options on intake rate and predation rate. American Naturalist 144: 978 – 1000.en_US
dc.identifier.citedreferenceNorberg, R. A. 1981. Optimal flight speed in birds when feeding young. Journal of Animal Ecology 50: 473 – 477.en_US
dc.identifier.citedreferenceO'Brien, W. J. 1974. The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology 55: 135 – 141.en_US
dc.identifier.citedreferencePeacor, S. D., and E. E. Werner. 1997. Trait-mediated indirect interactions in a simple aquatic community. Ecology 78: 1146 – 1156.en_US
dc.identifier.citedreferenceRelyea, R. A. 1998. Phenotypic plasticity in larval anurans. Dissertation. University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.identifier.citedreferenceRelyea, R. A., and E. E. Werner. 1999. Quantifying the relation between predator-induced behavior responses and growth performance in larval anurans. Ecology 80: 2117 – 2124.en_US
dc.identifier.citedreferenceRobinson, B. W., and D. S. Wilson. 1998. Optimal foraging, specialization, and a solution to Liem's paradox. American Naturalist 151: 223 – 235.en_US
dc.identifier.citedreferenceRuxton, G. D. 1995. Short term refuge use and stability of predator–prey models. Theoretical Population Biology 47: 1 – 17.en_US
dc.identifier.citedreferenceSih, A. 1987a. Predators and prey lifestyles: an evolutionary and ecological overview. Pages 203–224 in W. C. Kerfoot, and A. Sih, editors. Predation: direct and indirect impacts on aquatic communities. University of New England Press, Hanover, New Hampshire, USA.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.