Show simple item record

Interactive Effects Of Atmospheric Co2 And Soil‐N Availability On Fine Roots Of Populus Tremuloides

dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorMaziasz, Jenniferen_US
dc.contributor.authorDeForest, Jareden_US
dc.contributor.authorCurtis, Peter S.en_US
dc.contributor.authorLussenhop, Johnen_US
dc.date.accessioned2016-02-01T18:49:33Z
dc.date.available2016-02-01T18:49:33Z
dc.date.issued2000-02en_US
dc.identifier.citationPregitzer, Kurt S.; Zak, Donald R.; Maziasz, Jennifer; DeForest, Jared; Curtis, Peter S.; Lussenhop, John (2000). "Interactive Effects Of Atmospheric Co2 And Soil‐N Availability On Fine Roots Of Populus Tremuloides." Ecological Applications 10(1): 18-33.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117130
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherEcological Society of Americaen_US
dc.subject.otherminirhizotronsen_US
dc.subject.othermorphology, rootsen_US
dc.subject.othernitrogenen_US
dc.subject.othernutrient cyclingen_US
dc.subject.otheratmospheric CO2 and soil-N availability, interactionen_US
dc.subject.othercarbon and nitrogenen_US
dc.subject.otherfine-root turnover and biomassen_US
dc.subject.otherglobal climate changeen_US
dc.subject.otherroot growth and morphologyen_US
dc.subject.othersoil respirationen_US
dc.subject.otherPopulus tremuloidesen_US
dc.titleInteractive Effects Of Atmospheric Co2 And Soil‐N Availability On Fine Roots Of Populus Tremuloidesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109-1115 USAen_US
dc.contributor.affiliationotherDepartment of Biology, University of Illinois, Chicago, Illinois 60607-7060 USAen_US
dc.contributor.affiliationotherDepartment of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio 43210-1293 USAen_US
dc.contributor.affiliationotherSchool of Forestry and Wood Products, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117130/1/eap200010118.pdf
dc.identifier.doi10.1890/1051-0761(2000)010[0018:IEOACA]2.0.CO;2en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceReich, P. B., M. B. Walters, and D. S. Ellsworth. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62: 365 – 392.en_US
dc.identifier.citedreferenceNewman, E. I. 1966. A method of estimating the total length of root in a sample. Journal of Applied Ecology 3: 139 – 145.en_US
dc.identifier.citedreferenceNorby, R. J. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant and Soil 165: 9 – 20.en_US
dc.identifier.citedreferenceNorby, R. J., and M. F. Cotrufo. 1998. A question of litter quality. Nature 396: 17.en_US
dc.identifier.citedreferenceNorby, R. J., S. D. Wullschleger, and C. A. Gunderson. 1996. Tree responses to elevated CO 2 and implications for forests. Pages 1–21 in G. W. Koch and H. A. Mooney, editors. Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, California.en_US
dc.identifier.citedreferenceNorby, R. J., S. D. Wullschleger, C. A. Gunderson, E. G. O’Neill, and M. K. McCraken. 1992. Productivity and compensatory responses of yellow poplar trees to elevated CO 2. Nature 357: 322 – 324.en_US
dc.identifier.citedreferenceNye, P. H., and P. B. Tinker. 1977. Solute movement in the soil:root system. Blackwell Scientific, Oxford, UK.en_US
dc.identifier.citedreferencePregitzer, K. S., R. L. Hendrick, and R. Fogel. 1993. The demography of fine roots in response to patches of water and nitrogen. New Phytologist 125: 575 – 580.en_US
dc.identifier.citedreferencePregitzer, K. S., M. E. Kubiske, C. K. Yu, and R. L. Hendrick. 1997. Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111: 302 – 308.en_US
dc.identifier.citedreferencePregitzer, K. S., M. J. Laskowski, A. J. Burton, V. C. Lessard, and D. R. Zak. 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology 18: 665 – 670.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, P. S. Curtis, M. E. Kubiske, J. A. Teeri, and C. S. Vogel. 1995. Atmospheric CO 2, soil nitrogen and turnover of fine roots. New Phytologist 129: 579 – 585.en_US
dc.identifier.citedreferencePrior, S. A., H. A. Torbert, G. B. Runion, H. H. Rogers, C. W. Wood, B. A. Kimball, R. L. LaMorte, P. J. Pinter, and G. W. Wall. 1997. Free-air carbon dioxide enrichment of wheat: soil carbon and nitrogen dynamics. Journal of Environmental Quality 26: 1161 – 1166.en_US
dc.identifier.citedreferenceRaich, J. W., R. D. Bowden, and P. A. Steudler. 1990. Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soils. Soil Science Society of America Journal 54: 1754 – 1757.en_US
dc.identifier.citedreferenceRey, A., and P. G. Jarvis. 1997. Growth response of young birch trees ( Betula pendula Roth.) after four and a half years of CO 2 exposure. Annals of Botany 80: 809 – 816.en_US
dc.identifier.citedreferenceRobson, D. S. 1959. A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics 15: 187 – 191.en_US
dc.identifier.citedreferenceRogers, H. H., C. M. Peterson, J. N. McCrimmon, and J. D. Cure. 1992. Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell and Environment 15: 749 – 752.en_US
dc.identifier.citedreferenceRogers, H. R., and B. Runion. 1994. Plant responses to atmospheric CO 2 enrichment with emphasis on roots and the rhizoshpere. Environmental Pollution 83: 155 – 189.en_US
dc.identifier.citedreferenceRothstein, D. E., D. R. Zak, K. S. Pregitzer, and P. S. Curtis. 2000. The kinetics of nitrogen uptake by Populus tremuloides grown under experimental atmospheric CO 2 and soil N availability treatments. Tree Physiology in press.en_US
dc.identifier.citedreferenceRussell, C. A., and R. P. Voroney. 1998. Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired. Canadian Journal of Soil Science 78: 301 – 310.en_US
dc.identifier.citedreferenceRyan, M. G., R. M. Hubbard, S. Pongracic, R. J. Raison, and R. E. McCurtrie. 1996. Foliage, fine root, woody tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology 9: 255 – 266.en_US
dc.identifier.citedreferenceSAS Institute. 1990. SAS/STAT user’s guide, version 6, fourth edition. Volume 2. SAS Institute, Cary, North Carolina, USA.en_US
dc.identifier.citedreferenceSchimmel, D. 1990. Biogeochemical feedbacks in the Earth system. Pages 68–82 in J. Leggett, editor. Global warming: the Greenpeace report. Oxford University Press, Oxford, UK.en_US
dc.identifier.citedreferenceSmucker, A. J. M., S. L. McBurney, and A. K. Srivanstava. 1982. Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal 74: 500 – 503.en_US
dc.identifier.citedreferenceSteel, R. G. D., and J. H. Torrie. 1980. Principles and procedures of statistics. Second edition. McGraw-Hill, New York, New York, USA.en_US
dc.identifier.citedreferenceStettler, R. F., H. D. Bradshaw, Jr., P. E. Heilman, and T. M. Hinkley. 1996. Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, Ontario, Canada.en_US
dc.identifier.citedreferenceSteudler, P. A., R. D. Bowden, J. M. Melillo, and J. D. Aber. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature (London) 341: 314 – 316.en_US
dc.identifier.citedreferenceTingey, D. T., M. G. Johnson, D. L. Phillips, D. W. Johnson, and J. T. Ball. 1996. Effects of elevated CO 2 and nitrogen on the synchrony of shoot and root growth in ponderosa pine. Tree Physiology 16: 905 – 914.en_US
dc.identifier.citedreferenceVitousek, P. M. 1994. Beyond global warming: ecology and global change. Ecology 75: 1861 – 1876.en_US
dc.identifier.citedreferenceVitousek, P. M., and R. W. Howarth. 1991. Nitrogen limitation on land and sea: How can it occur? Biogeochemistry 13: 87 – 115.en_US
dc.identifier.citedreferenceVogt, K. A., C. C. Grier, S. T. Gower, D. S. Sprugel, and D. J. Vogt. 1986. Production, turnover, and nutritional dynamics of above- and below-ground detritus of world forests. Advances in Ecologial Research 15: 303 – 307.en_US
dc.identifier.citedreferenceVose, J. M., K. J. Elliott, D. W. Johnson, D. T. Tingey, and M. G. Johnson. 1997. Soil respiration response to three years of elevated CO 2 and N fertilization in ponderosa pine ( Pinus ponderosa Doug. Ex Laws.). Plant and Soil 190: 19 – 28.en_US
dc.identifier.citedreferenceWalker, R. F., D. R. Geisinger, D. W. Johnson, and J. T. Ball. 1998. Atmospheric CO 2 enrichment and soil N fertility effects on juvenile ponderosa pine: growth, ectomycorrhizal development, and xylem water potential. Forest Ecology and Management 102: 33 – 44.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, and W. E. Holmes. 2000a. Atmospheric CO 2 and the composition and function of soil microbial communities. Ecological Applications 10: 47 – 59.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. L. Randlett. 1993. Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant and Soil 151: 105 – 117.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, P. S. Curtis, C. S. Vogel, W. E. Holmes, and J. Lussenhop. 2000b. Atmospheric CO 2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides.. Ecological Applications 10: 34 – 46.en_US
dc.identifier.citedreferenceArnone, J. A., III, and Ch. Körner. 1995. Soil and biomass carbon pools in model communities of tropical plants under elevated CO 2. Oecologia 104: 61 – 71.en_US
dc.identifier.citedreferenceBall, A. S., and B. G. Drake. 1998. Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. Soil Biology and Biochemistry 30: 1203 – 1205.en_US
dc.identifier.citedreferenceBarnes, B. V. 1959. Natural variation and clonal development of Populus tremuloides and P. grandidentata in Northern Lower Michigan. Dissertation. University of Michigan, Ann Arbor, Michigan, USA.en_US
dc.identifier.citedreferenceBassiriRad, H., K. L. Griffin, J. F. Reynolds, and B. R. Strain. 1997. Changes in root NH 4 + and NO 3 − absorption rates of loblolly and ponderosa pine in response to CO 2 enrichment. Plant and Soil 190: 1 – 9.en_US
dc.identifier.citedreferenceBehera, N., S. K. Joshi, and D. P. Pati. 1990. Root contribution to total soil metabolism in a tropical forest soil from Orissa, India. Forest Ecology and Management 36: 125 – 134.en_US
dc.identifier.citedreferenceBerntson, G. M., and F. A. Bazzaz. 1996. The allometry of root production and loss in seedlings of Acer rubrum (Aceraceae) and Betula papyrifera (Betulaceae): implications for root dynamics in elevated CO 2. American Journal of Botany 83: 608 – 616.en_US
dc.identifier.citedreferenceBerntson, G. M., and F. I. Woodward. 1992. The root system architecture and development of Senecio vulgaris in elevated CO 2 and drought. Functional Ecology 6: 324 – 333.en_US
dc.identifier.citedreferenceBezemer, T. M., and T. H. Jones. 1998. Plant–insect herbivore interactions in elevated atmospheric CO 2: quantitative analyses and guild effects. Oikos 82: 212 – 222.en_US
dc.identifier.citedreferenceBryant, J. P., F. S. Chapin, III, and D. R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357 – 368.en_US
dc.identifier.citedreferenceCaldwell, M. M., L. M. Dudley, and B. Lilieholm. 1992. Soil solution phosphate, root uptake kinetics and nutrient acquisition: implications for a patchy soil environment. Oecologia 89: 305 – 309.en_US
dc.identifier.citedreferenceCrookshanks, M., G. Taylor, and L. Dolan. 1998. A model system to study the effects of elevated CO 2 on the developmental physiology of roots: the use of Arabidopsis thaliana.. Journal of Experimental Botany 49: 593 – 597.en_US
dc.identifier.citedreferenceCurtis, P. S., C. S. Vogel, X. Wang, K. S. Pregitzer, D. R. Zak, J. Lussenhop, M. Kubiske, and J. A. Teeri. 2000. Gas exchange, leaf nitrogen, and growth efficiency of Populus tremuloides in a CO 2 -enriched atmosphere. Ecological Applications 10: 3 – 17.en_US
dc.identifier.citedreferenceCurtis, P. S., and X. Wang. 1998. A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia 113: 299 – 313.en_US
dc.identifier.citedreferenceDiaz, S., J. P. Grime, J. Harris, and E. McPherson. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364: 616 – 617.en_US
dc.identifier.citedreferenceEdwards, N. T., and R. J. Norby. 1999. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant and Soil 206: 85 – 97.en_US
dc.identifier.citedreferenceEvans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C 3 plants. Oecologia 78: 9 – 19.en_US
dc.identifier.citedreferenceEwel, K. C., W. P. Cropper, Jr., and H. L. Gholz. 1987. Soil CO 2 evolution in Florida slash pine plantations. II. Importance of root respiration. Canadian Journal of Forest Research 17: 330 – 333.en_US
dc.identifier.citedreferenceField, C., and H. A. Mooney. 1986. The photosynthesis–nitrogen relationship in wild plants. Pages 25–55 in T. J. Givnish, editor. On the economy of plant form and function. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceFitter, A. H. 1982. Morphometric analysis of root systems: application of technique and influence of soil fertility on root system development in two herbaceous species. Plant Cell and Environment 5: 313 – 322.en_US
dc.identifier.citedreferenceFitter, A. H. 1987. An architectural approach to the comparative ecology of plant root systems. New Phytologist 106: 61 – 77.en_US
dc.identifier.citedreferenceFogel, R., and G. Hunt. 1979. Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research 9: 245 – 256.en_US
dc.identifier.citedreferenceGebauer, R. L. E., B. R. Strain, and J. F. Reynolds. 1998. The effect of elevated CO 2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine. Oecologia 113: 29 – 36.en_US
dc.identifier.citedreferenceGoodroad, L. L., and D. R. Keeney. 1984. Nitros oxide emission from forest, marsh, and prairie ecosystems. Journal of Environmental Quality 13: 448 – 452.en_US
dc.identifier.citedreferenceGriffin, K. L., M. A. Bashkin, R. B. Thomas, and B. R. Strain. 1997. Interactive effects of soil nitrogen and atmospheric carbon dioxide on root/rhizosphere carbon dioxide efflux from loblolly and ponderosa pine seedlings. Plant and Soil 190: 11 – 18.en_US
dc.identifier.citedreferenceHaynes, B. E., and S. T. Gower. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15: 317 – 325.en_US
dc.identifier.citedreferenceHeagle, A. S., R. B. Philbeck, R. E. Ferrell, and W. W. Heck. 1989. Design and performance of a large field exposure chamber to measure effects of air quality on plants. Journal of Environmental Quality 18: 361 – 368.en_US
dc.identifier.citedreferenceHendrick, R. L., and K. S. Pregitzer. 1992. The demography of fine roots in a northern hardwood forest. Ecology 73: 1094 – 1104.en_US
dc.identifier.citedreferenceHendrick, R. L., and K. S. Pregitzer. 1993. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23: 2507 – 2520.en_US
dc.identifier.citedreferenceHendricks, J. J., K. J. Nadelhoffer, and J. D. Aber. 1993. Assessing the role of fine roots in carbon and nutrient cycling. Trends in Ecology & Evolution 8: 174 – 178.en_US
dc.identifier.citedreferenceHungate, B. A., E. A. Holland, R. B. Jackson, F. S. Chapin, III, H. A. Mooney, and C. B. Field. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388: 576 – 579.en_US
dc.identifier.citedreferenceIneson, P., P. A. Coward, and U. A. Hartwig. 1998. Soil gas fluxes of N 2 O, CH 4 and CO 2 beneath Lolium perenne under elevated CO 2: the Swiss free air carbon dioxide enrichment experiment. Plant and Soil 198: 89 – 95.en_US
dc.identifier.citedreferenceJohnson, D. W., D. R. Geisinger, R. F. Walker, J. Vose, K. Elliot, and J. T. Ball. 1994. Soil pCO 2, soil respiration, and root activity in CO 2 -fumigated ponderosa pine. Plant and Soil 165: 111 – 121.en_US
dc.identifier.citedreferenceJohnson, D. W., R. B. Thomas, K. L. Griffin, D. T. Tissue, J. T. Ball, B. R. Strain, and R. F. Walker. 1998. Effects of carbon dioxide and nitrogen on growth and nitrogen uptake in ponderosa and loblolly pine. Journal of Environmental Quality 27: 414 – 425.en_US
dc.identifier.citedreferenceKing, J. S., R. B. Thomas, and B. R. Strain. 1997. Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO 2, temperature, and nitrogen. Plant and Soil 195: 107 – 119.en_US
dc.identifier.citedreferenceKlironomos, J. N., M. C. Rillig, and M. F. Allen. 1996. Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO 2. Functional Ecology 10: 527 – 534.en_US
dc.identifier.citedreferenceKubiske, M. E., K. S. Pregitzer, C. J. Mikan, D. R. Zak, J. L. Maziasz, and J. A. Teeri. 1997. Populus tremuloides photosynthesis and crown architecture in response to elevated CO 2 and soil N availability. Oecologia 110: 328 – 336.en_US
dc.identifier.citedreferenceKubiske, M. E., K. S. Pregitzer, D. R. Zak, and C. J. Mikan. 1998. Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO 2 and soil N availability. New Phytologist 140: 251 – 260.en_US
dc.identifier.citedreferenceKuo, S. 1996. Phosphorus. Pages 894–895 in D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer, editors. Methods of Soil Analysis. Part 3. Chemical methods. SSSA Book Series number 5. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, USA.en_US
dc.identifier.citedreferenceLuo, Y., R. B. Jackson, C. B. Field, and H. A. Mooney. 1996. Elevated CO 2 increases belowground respiration in California grasslands. Oecologia 108: 130 – 137.en_US
dc.identifier.citedreferenceMeredith, M. P., and S. V. Stehman. 1991. Repeated measures experiments in forestry: focus on analysis of response curves. Canadian Journal of Forest Research 21: 957 – 965.en_US
dc.identifier.citedreferenceNakane, K., M. M. Yamamoto, and H. Tsubota. 1983. Estimation of root respiration rate in a mature forest. Japanese Journal of Ecology 33: 397 – 408.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.