Show simple item record

Simulated Atmospheric No3− Deposition Increases Soil Organic Matter By Slowing Decomposition

dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorHolmes, William E.en_US
dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorTalhelm, Alan F.en_US
dc.date.accessioned2016-02-01T18:50:46Z
dc.date.available2016-02-01T18:50:46Z
dc.date.issued2008-12en_US
dc.identifier.citationZak, Donald R.; Holmes, William E.; Burton, Andrew J.; Pregitzer, Kurt S.; Talhelm, Alan F. (2008). "Simulated Atmospheric No3− Deposition Increases Soil Organic Matter By Slowing Decomposition." Ecological Applications 18(8): 2016-2027.en_US
dc.identifier.issn1051-0761en_US
dc.identifier.issn1939-5582en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/117243
dc.publisherEcological Society of Americaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherdecompositionen_US
dc.subject.other15N tracingen_US
dc.subject.othernorthern hardwood forestsen_US
dc.subject.otherSOM accumulationen_US
dc.subject.otheratmospheric N depositionen_US
dc.subject.otherecosystem N budgeten_US
dc.titleSimulated Atmospheric No3− Deposition Increases Soil Organic Matter By Slowing Decompositionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 USAen_US
dc.contributor.affiliationotherEcosystem Science Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931 USAen_US
dc.contributor.affiliationotherDepartment of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada 89512 USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/117243/1/eap20081882016.pdf
dc.identifier.doi10.1890/07-1743.1en_US
dc.identifier.sourceEcological Applicationsen_US
dc.identifier.citedreferenceRietz, D. N. and R. J. Haynes. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry 35: 845 – 854.en_US
dc.identifier.citedreferenceMagnani, F., et al 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 477: 848 – 850.en_US
dc.identifier.citedreferenceMason, J. C., M. Richards, W. Zimmermann, and P. Broda. 1988. Identification of extracellular proteins from actinomycetes responsible for the solubilization of lignocellulose. Applied Microbiology and Biotechnology 28: 276 – 280.en_US
dc.identifier.citedreferenceMoorhead, D. L. and R. L. Sinsabaugh. 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs 76: 151 – 174.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., M. Downs, and B. Fry. 1999b. Sinks for 15 N-enriched additions to an oak forest and a red pine plantation. Ecological Applications 9: 72 – 86.en_US
dc.identifier.citedreferenceNadelhoffer, K. J., B. A. Emmet, P. Gundersen, O. J. Kjønnas, C. J. Koopmans, P. Schleppi, A. Tietema, and R. F. Wright. 1999a. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145 – 148.en_US
dc.identifier.citedreferenceOsono, T. 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecological Research 22: 955 – 974.en_US
dc.identifier.citedreferencePepper, D. A., R. E. Del Grosso, R. E. McMurtrie, and W. J. Parton. 2005. Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO 2 ], temperature and nitrogen input. Global Biogeochemical Cycles 19: GB1004.en_US
dc.identifier.citedreferencePregitzer, K. S., A. J. Burton, D. R. Zak, and A. F. Talhelm. 2008. Simulated chronic N deposition increases carbon storage in northern temperate forests. Global Change Biology 14: 142 – 153.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, A. J. Burton, J. A. Ashby, and N. W. MacDonald. 2004. Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68: 179 – 197.en_US
dc.identifier.citedreferenceRamachandra, M., D. L. Crawford, and A. L. Pometto III. 1987. Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp.: a comparative study of wild-type and genetically manipulated strains. Applied Environmental Microbiology 53: 2754 – 2760.en_US
dc.identifier.citedreferenceReddy, C. A. and T. M. D'Souza. 1994. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiology Reviews 13: 137 – 152.en_US
dc.identifier.citedreferenceSchimel, D. S., I. G. Enting, M. Heimann, T. M L. Wigley, D. Raynard, D. Alves, and U. Siegenthaler. 1995. CO 2 and the carbon cycle. Pages 39 – 71. in Houghton, J. T., L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris, and K. Maskell, editors. Climate change 1994: radiative forcing of climate change. Cambridge University Press. Cambridge, UK.en_US
dc.identifier.citedreferenceSchindler, D. W. and S. E. Bayley. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increasing nitrogen deposition. Global Biogeochemical Cycles 7: 717 – 734.en_US
dc.identifier.citedreferenceSinsabaugh, R. L., M. M. Carreiro, and D. A. Repert. 2002. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60: 1 – 24.en_US
dc.identifier.citedreferenceSmemo, K. A., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2007. Characteristics of DOC exports from northern hardwood forests receiving chronic atmospheric NO 3 − deposition. Ecosystems 10: 369 – 379.en_US
dc.identifier.citedreferenceThornthwaite, C. W. and J. R. Mather. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology 10: 185 – 311.en_US
dc.identifier.citedreferenceTien, M. and C. P D. Tu. 1987. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326: 520 – 523. [Corrigendum 328:742].en_US
dc.identifier.citedreferenceTownsend, A. R., B. H. Braswell, E. A. Holland, and J. E. Penner. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications 6: 806 – 814.en_US
dc.identifier.citedreferenceVanderwoude, M. W., K. Boominathan, and C. A. Reddy. 1993. Nitrogen regulation of lignin peroxidase and manganese-dependent perioxidase production is independent of carbon and manganese regulation in Phanerochaete chrysosoporium. Archives of Microbiology 160: 1 – 4.en_US
dc.identifier.citedreferenceVan Diepen, L. T A., E. E. Lilleskov, K. S. Pregitzer, and R. M. Miller. 2007. Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist 176: 175 – 183.en_US
dc.identifier.citedreferenceVetter, M., C. Wirth, H. Böttcher, G. Churkina, E-D. Schulze, T. Wurtzler, and G. Weber. 2005. Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biology 11: 810 – 827.en_US
dc.identifier.citedreferenceWaldrop, M. P., D. R. Zak, R. L. Sinsabaugh, M. Gallo, and C. Lauber. 2004. Nitrogen deposition modifies soil carbon storage through changes in microbial enzyme activity. Ecological Application 14: 1172 – 1177.en_US
dc.identifier.citedreferenceWhittaker, R. H., F. H. Bormann, G. E. Likens, and T. G. Siccama. 1974. Hubbard Brook ecosystem study: forest biomass and production. Ecological Monographs 44: 233 – 252.en_US
dc.identifier.citedreferenceWorrall, J. J., S. E. Angnost, and R. A. Zabel. 1997. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89: 199 – 219.en_US
dc.identifier.citedreferenceZak, D. R., W. E. Holmes, M. J. Tomlinson, K. S. Pregitzer, and A. J. Burton. 2006. Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO 3 − deposition. Ecosystems 9: 242 – 253.en_US
dc.identifier.citedreferenceZak, D. R., K. S. Pregitzer, W. E. Holmes, A. J. Burton, and G. P. Zogg. 2004. Anthropogenic N deposition and the fate of 15 NO 3 − in a northern hardwood ecosystem. Biogeochemistry 69: 143 – 157.en_US
dc.identifier.citedreferenceZogg, G. P., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2000. Microbial immobilization and the retention of anthropogenic nitrate in northern hardwood forests. Ecology 81: 1858 – 1866.en_US
dc.identifier.citedreferenceBardner, M. J. and D. L. Crawford. 1981. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by Streptomyces. Canadian Journal of Microbiology 27: 859 – 863.en_US
dc.identifier.citedreferenceBerg, B. and E. Matzner. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review 5: 1 – 25.en_US
dc.identifier.citedreferenceBerg, B. and V. Meentemeyer. 2002. Litter quality in a north European transect versus carbon storage potential. Plant and Soil 242: 83 – 92.en_US
dc.identifier.citedreferenceBerg, B., B. Wessen, and G. Ekbohm. 1982. Nitrogen level and lignin decomposition in Scots pine needle litter. Oikos 38: 291 – 296.en_US
dc.identifier.citedreferenceBerrocal, M. M., J. Rodriguez, A. S. Ball, M. I. Perez-Leblic, and M. E. Arias. 1997. Solubilisation and mineralisation of [C-14]lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid-state fermentation. Applied Microbiology and Biotechnology 48: 379 – 384.en_US
dc.identifier.citedreferenceBoominathan, K., S. B. Dass, T. A. Randall, and C. A. Reddy. 1990. Nitrogen-deregulated mutants of Phanerochaete crysosprorium —a lignin-degrading basidiomycete. Archives of Microbiology 153: 521 – 527.en_US
dc.identifier.citedreferenceBraun, E. L. 1950. Deciduous forests of eastern North America. Blackburn Press. Caldwell, New Jersey, USA.en_US
dc.identifier.citedreferenceBrookshire, E. N J., H. M. Valett, S. A. Thomas, and J. R. Webster. 2007. Atmospheric N deposition increases organic N loss from temperate forests. Ecosystems 10: 252 – 262.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Chronic NO 3 − additions reduce soil respiration in northern hardwood forests. Global Change Biology 10: 1080 – 1091.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, and D. D. Reed. 1991. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient. Forest Science 37: 1041 – 1059.en_US
dc.identifier.citedreferenceCabrera, M. L. and M. H. Beare. 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Science Society of America Journal 57: 1007 – 1012.en_US
dc.identifier.citedreferenceCarreiro, M. M., R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst. 2000. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81: 2359 – 2365.en_US
dc.identifier.citedreferenceCurrie, W. S., K. J. Nadelhoffer, and J. D. Aber. 2004. Redistributions of 15 N highlight turnover and replenishment of mineral soil organic N as a long-term control on forest C balance. Forest Ecology and Management 196: 109 – 127.en_US
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2004. Nitrate deposition and the microbial degradation of cellulose and lignin in a northern hardwood forest. Soil Biology and Biochemistry 36: 965 – 971.en_US
dc.identifier.citedreferenceDeForest, J. L., D. R. Zak, K. S. Pregitzer, and A. J. Burton. 2005. Atmospheric NO 3 − deposition, declines in decomposition and increases in DOC: test of a potential mechanism. Soil Science Society of America Journal 69: 1233 – 1237.en_US
dc.identifier.citedreferenceD'Souza, T. M., K. Boominathan, and C. A. Reddy. 1996. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Applied and Environmental Microbiology 62: 3739 – 3744.en_US
dc.identifier.citedreferenceFog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter. Biological Reviews 63: 433 – 462.en_US
dc.identifier.citedreferenceFrey, S. D., M. Knorr, J. L. Parrent, and R. T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology Management 196: 159 – 171.en_US
dc.identifier.citedreferenceGalloway, J. N., et al 2004. Nitrogen cycles; past, present and future. Biogeochemistry 70: 153 – 226.en_US
dc.identifier.citedreferenceGarćia, C. and T. Hernández. 1996. Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant Soil 178: 255 – 263.en_US
dc.identifier.citedreferenceGiroux, H., P. Vidal, J. Bouchard, and F. Lamy. 1988. Degradation of Kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Applied and Environmental Microbiology 54: 3064 – 3070.en_US
dc.identifier.citedreferenceGodden, B., A. S. Ball, P. Helvenstein, A. J. McCarthy, and M. J. Penninckx. 1992. Towards elucidation of the lignin degradation pathway in actinomycetes. Journal of General Microbiology 138: 2441 – 2448.en_US
dc.identifier.citedreferenceGoodale, C. L., et al 2002. Forest carbon sinks in the Northern Hemisphere. Ecological Applications 12: 891 – 899.en_US
dc.identifier.citedreferenceHolland, E. A., B. H. Braswell, J. F. Lamarque, A. Townsend, J. Sulzman, J. F. Müller, F. Dentener, G. Brasseur, H. Levy, J. E. Penner, and G. J. Roelofs. 1997. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of Geophysical Research—Atmospheres 102 / (D13): 15849 – 15866.en_US
dc.identifier.citedreferenceHolmes, W. E., D. R. Zak, K. S. Pregitzer, and J. S. King. 2003. Nitrogen cycling beneath Populus tremuloides, Betula papyrifera and Acer saccharum growing under elevated CO 2 and O 3. Global Change Biology 9: 1743 – 1750.en_US
dc.identifier.citedreferenceKnorr, M., S. D. Frey, and P. S. Curtis. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86: 3252 – 3257.en_US
dc.identifier.citedreferenceLi, D., M. Alic, and M. H. Gold. 1994. Nitrogen regulation of lignin peroxidase gene transcrption. Applied Environmental Microbiology 60: 3447 – 3449.en_US
dc.identifier.citedreferenceLi, X., F. Li, Q. Ma, and Z. Cui. 2006. Interactions of NaCl and Na 2 SO 4 on soil organic C mineralization after addition of maize straw. Soil Biology and Biochemistry 38: 2328 – 2335.en_US
dc.identifier.citedreferenceMagill, A. H., J. D. Aber, G. M. Berntson, W. H. McDowell, K. J. Nadelhoffer, J. M. Melillo, and P. Steudler. 2000. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3: 238 – 253.en_US
dc.identifier.citedreferenceMagill, A. H., J. D. Aber, J. J. Hendricks, R. D. Bowden, J. M. Melillo, and P. A. Stuedler. 1997. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications 7: 402 – 415.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.