Show simple item record

Cooling and heating of the quantum motion of trapped cadmium(+) ions.

dc.contributor.authorDeslauriers, Louis
dc.contributor.advisorMonroe, Christopher R.
dc.date.accessioned2016-08-30T16:00:04Z
dc.date.available2016-08-30T16:00:04Z
dc.date.issued2006
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3208447
dc.identifier.urihttps://hdl.handle.net/2027.42/125641
dc.description.abstractThe quest for a quantum system best satisfying the stringent requirements of a quantum information processor has made tremendous progress in many fields of physics. In the last decade, trapped ions have been established as one of the most promising architectures to accomplish the task. Internal states of an ion which can have extremely long coherence time can be used to store a quantum bit, and therefore allow many gate operations before the coherence is lost. Entanglement between multiple ions can be established via Coulomb interactions mediated by appropriate laser fields. Entangling schemes usually require the ions to be initialized to near their motional ground state. The interaction of fluctuating electric fields with the motional state of the ion leads to heating and thus to decoherence for entanglement generation limiting the fidelity of quantum logic gates. Effective ground state cooling of trapped ion motion and suppression of motional heating are thus crucial to many applications of trapped ions in quantum information science. In this thesis, I describe the implementation and study of several components of a Cadmium-ion-based quantum information processor, with special emphasis on the control and decoherence of trapped ion motion. I first discuss the building and design of various ion traps that were used in this work. I also report on the use of ultrafast laser pulses to photoionize and load cadmium ions in a variety of rf Paul trap geometries. A detailed analysis of the photoionization scheme is presented, along with its dependence on controlled experimental parameters. I then describe the implementation of Raman sideband cooling on a single trapped <super>111</super>Cd<super>+</super> ion to the ground state of motion, where a ground state population of 97% was achieved. The efficacy of this cooling technique is discussed with respect to different initial motional state distributions and its sensitivity to the presence of motional heating. I also present an experiment where the motion of a single trapped <super> 112</super>Cd<super>+</super> ion is sympathetically cooled by directly Doppler cooling a <super>114</super>Cd<super>+</super> ion in the same trap. The implications of this result are relevant to the scaling of a trapped ion quantum computer, where the unwanted motion of an ion crystal can be quenched while not affecting the internal states of the qubit ions. (Abstract shortened by UMI.)
dc.format.extent156 p.
dc.languageEnglish
dc.language.isoEN
dc.subjectCadmium
dc.subjectCd
dc.subjectCooling
dc.subjectHeating
dc.subjectIon Trapping
dc.subjectIons
dc.subjectQuantum Motion
dc.subjectTrapped
dc.titleCooling and heating of the quantum motion of trapped cadmium(+) ions.
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineAtomic physics
dc.description.thesisdegreedisciplinePure Sciences
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/125641/2/3208447.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.