Show simple item record

Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic

dc.contributor.authorMay, N. W.
dc.contributor.authorQuinn, P. K.
dc.contributor.authorMcNamara, S. M.
dc.contributor.authorPratt, K. A.
dc.date.accessioned2016-10-17T21:17:21Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08-16
dc.identifier.citationMay, N. W.; Quinn, P. K.; McNamara, S. M.; Pratt, K. A. (2016). "Multiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic." Journal of Geophysical Research: Atmospheres 121(15): 9208-9219.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/134110
dc.description.abstractThinning of Arctic sea ice gives rise to ice fracturing and leads (areas of open water surrounded by sea ice) that are a potential source of sea salt aerosol. Atmospheric particle inorganic ion concentrations, local sea ice conditions, and meteorology at Barrow, AK, from 2006 to 2009, were combined to investigate the dependence of submicron (aerodynamic diameter < 1 µm) and supermicron (aerodynamic diameter 1–10 µm) sea salt mass concentrations on sea ice coverage and wind speed. Consistent with a wind‐dependent source, supermicron sea salt mass concentrations increased in the presence of nearby leads and wind speeds greater than 4 m s−1. Increased supermicron and submicron sea salt chloride depletion was observed for periods of low winds or a lack of nearby open water, consistent with transported sea salt influence. Sea salt aerosol produced from leads has the potential to alter cloud formation, as well as the chemical composition of the Arctic atmosphere and snowpack.Key PointsLocal sea ice coverage and wind speed are controlling factors for Arctic sea salt concentrationsSea salt aerosol is produced from sea ice leads at wind speeds > 4 m/sThe influence of long‐range transported sea salt aerosol was greatest during periods of lower winds and increased sea ice coverage
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheratmospheric chemistry
dc.subject.otheraerosols
dc.subject.othersea ice
dc.subject.othersea salt aerosol
dc.subject.otherArctic
dc.titleMultiyear study of the dependence of sea salt aerosol on wind speed and sea ice conditions in the coastal Arctic
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134110/1/jgrd53171_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134110/2/jgrd53171.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134110/3/jgrd53171-sup-0001-supplementary.pdf
dc.identifier.doi10.1002/2016JD025273
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRadke, L. F., P. V. Hobbs, and J. E. Pinnons ( 1976 ), Observations of cloud condensation nuclei, sodium‐containing particles, ice nuclei and the light‐scattering coefficient near Barrow, Alaska, J. Appl. Meteorol., 15 ( 9 ), 982 – 995, doi: 10.1175/1520-0450(1976)015<0982:ooccns>2.0.co;2.
dc.identifier.citedreferenceO’Dowd, C. D., M. H. Smith, I. E. Consterdine, and J. A. Lowe ( 1997 ), Marine aerosol, sea‐salt, and the marine sulphur cycle: A short review, Atmos. Environ., 31 ( 1 ), 73 – 80, doi: 10.1016/s1352-2310(96)00106-9.
dc.identifier.citedreferenceOverland, J. E., and M. Wang ( 2013 ), When will the summer Arctic be nearly sea ice free?, Geophys. Res. Lett., 40, 2097 – 2101, doi: 10.1002/grl.50316.
dc.identifier.citedreferencePratt, K. A., et al. ( 2013 ), Photochemical production of molecular bromine in Arctic surface snowpacks, Nat. Geosci., 6 ( 5 ), 351 – 356, doi: 10.1038/ngeo1779.
dc.identifier.citedreferenceQuinn, P. K., D. J. Coffman, V. N. Kapustin, T. S. Bates, and D. S. Covert ( 1998 ), Aerosol optical properties in the marine boundary layer during the first Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties, J. Geophys. Res., 103 ( D13 ), 16,547 – 16,563, doi: 10.1029/97JD02345V.
dc.identifier.citedreferenceQuinn, P. K., D. B. Collins, V. H. Grassian, K. A. Prather, and T. S. Bates ( 2015 ), Chemistry and related properties of freshly emitted sea spray aerosol, Chem. Rev., 115 ( 10 ), 4383 – 4399, doi: 10.1021/cr500713g.
dc.identifier.citedreferenceQuinn, P. K., T. L. Miller, T. S. Bates, J. A. Ogren, E. Andrews, and G. E. Shaw ( 2002 ), A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska, J. Geophys. Res., 107, 4130, doi: 10.1029/2001JD001248.
dc.identifier.citedreferenceRankin, A. M., V. Auld, and E. W. Wolff ( 2000 ), Frost flowers as a source of fractionated sea salt aerosol in the polar regions, Geophys. Res. Lett., 27 ( 21 ), 3469 – 3472, doi: 10.1029/2000GL011771.
dc.identifier.citedreferenceSalter, M. E., P. Zieger, J. C. Acosta Navarro, H. Grythe, A. Kirkevåg, B. Rosati, I. Riipinen, and E. D. Nilsson ( 2015 ), An empirically derived inorganic sea spray source function incorporating sea surface temperature, Atmos. Chem. Phys., 15 ( 19 ), 11,047 – 11,066, doi: 10.5194/acp-15-11047-2015.
dc.identifier.citedreferenceScott, W. D., and Z. Levin ( 1972 ), Open channels in sea ice (leads) as ion sources, Science, 177 ( 4047 ), 425 – 426, doi: 10.1126/science.177.4047.425.
dc.identifier.citedreferenceSeguin, A. M., A.‐L. Norman, and L. Barrie ( 2014 ), Evidence of sea ice source in aerosol sulfate loading and size distribution in the Canadian High Arctic from isotopic analysis, J. Geophys. Res. Atmos., 119, 1087 – 1096, doi: 10.1002/2013JD020461.
dc.identifier.citedreferenceSerreze, M. C., and J. Stroeve ( 2015 ), Arctic sea ice trends, variability and implications for seasonal ice forecasting, Philos. Transact. A Math. Phys. Eng. Sci., 373 ( 2045 ), doi: 10.1098/rsta.2014.0159.
dc.identifier.citedreferenceShepson, P. B., et al. ( 2012 ), Changing polar environments: Interdisciplinary challenges, Eos Trans. AGU, 93 ( 11 ), 117, doi: 10.1029/2012EO110001.
dc.identifier.citedreferenceSimpson, W., L. Alvarez‐Aviles, T. A. Douglas, M. Sturm, and F. Domine ( 2005 ), Halogens in the coastal snow pack near Barrow, Alaska: Evidence for active bromine air‐snow chemistry during springtime, Geophys. Res. Lett., 32, L04811, doi: 10.1029/2004GL021748.
dc.identifier.citedreferenceSirois, A., and L. A. Barrie ( 1999 ), Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995, J. Geophys. Res., 104 ( D9 ), 11,599, doi: 10.1029/1999JD900077.
dc.identifier.citedreferenceStroeve, J., M. Serreze, M. Holland, J. Kay, J. Malanik, and A. Barrett ( 2012 ), The Arctic’s rapidly shrinking sea ice cover: A research synthesis, Clim. Change, 110 ( 3–4 ), 1005 – 1027, doi: 10.1007/s10584-011-0101-1.
dc.identifier.citedreferenceStruthers, H., A. M. L. Ekman, P. Glantz, T. Iversen, A. Kirkevag, E. M. Martensson, O. Seland, and E. D. Nilsson ( 2011 ), The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic, Atmos. Chem. Phys., 11 ( 7 ), 3459 – 3477, doi: 10.5194/acp-11-3459-2011.
dc.identifier.citedreferenceSturges, W. T., and L. A. Barrie ( 1988 ), Chlorine, bromine and iodine in Arctic aerosols, Atmos. Environ., 22 ( 6 ), 1179 – 1194, doi: 10.1016/0004-6981(88)90349-6.
dc.identifier.citedreferenceTjernström, M., et al. ( 2012 ), Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS), Atmos. Chem. Phys., 12 ( 15 ), 6863 – 6889, doi: 10.5194/acp-12-6863-2012.
dc.identifier.citedreferenceWilliams, J., M. de Reus, R. Krejci, H. Fischer, and J. Ström ( 2002 ), Application of the variability‐size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages, Atmos. Chem. Phys., 2 ( 2 ), 133 – 145, doi: 10.5194/acp-2-133-2002.
dc.identifier.citedreferenceWise, M. E., E. J. Freney, C. A. Tyree, J. O. Allen, S. T. Martin, L. M. Russell, and P. R. Buseck ( 2009 ), Hygroscopic behavior and liquid‐layer composition of aerosol particles generated from natural and artificial seawater, J. Geophys. Res., 114, D03201, doi: 10.1029/2008JD010449.
dc.identifier.citedreferenceYang, X., J. A. Pyle, and R. A. Cox ( 2008 ), Sea salt aerosol production and bromine release: Role of snow on sea ice, Geophys. Res. Lett., 35, L16815, doi: 10.1029/2008GL034536.
dc.identifier.citedreferenceYin, Y., Z. Levin, T. G. Reisin, and S. Tzivion ( 2000 ), The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study, Atmos. Res., 53 ( 1–3 ), 91 – 116, doi: 10.1016/s0169-8095(99)00046-0.
dc.identifier.citedreferenceBarrie, L. A., and M. J. Barrie ( 1990 ), Chemical components of lower tropospheric aerosols in the high arctic: Six years of observations, J. Atmos. Chem., 11, 211 – 226.
dc.identifier.citedreferenceBarrie, L. A., R. Staebler, D. Toom, B. Georgi, G. Denhartog, S. Landsberger, and D. Wu ( 1994 ), Arctic aerosol size‐segregated chemical observations in relation to ozone depletion during Polar Sunrise Experiment 1992, J. Geophys. Res., 99 ( D12 ), 25,439 – 25,451, doi: 10.1029/94JD01514.
dc.identifier.citedreferenceBlanchard, D. C., and A. H. Woodcock ( 1957 ), Bubble formation and modification in the sea and its meteorological significance, Tellus, 9 ( 2 ), 145 – 158, doi: 10.1111/j.2153-3490.1957.tb01867.x.
dc.identifier.citedreferenceBoucher, O., et al. ( 2013 ), Clouds and aerosols, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 571 – 658, Cambridge Univ. Press, Cambridge, U. K., and New York.
dc.identifier.citedreferenceBrowse, J., K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher ( 2012 ), The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12 ( 15 ), 6775 – 6798, doi: 10.5194/acp-12-6775-2012.
dc.identifier.citedreferenceBrowse, J., K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, and C. Leck ( 2014 ), The complex response of Arctic aerosol to sea‐ice retreat, Atmos. Chem. Phys., 14 ( 14 ), 7543 – 7557, doi: 10.5194/acp-14-7543-2014.
dc.identifier.citedreferenceDelene, D. J., and J. A. Ogren ( 2002 ), Variability of aerosol optical properties at four North American surface monitoring sites, J. Atmos. Sci., 59 ( 6 ), 1135 – 1150, doi: 10.1175/1520-0469(2002)059<1135:voaopa>2.0.co;2.
dc.identifier.citedreferenceDouglas, T. A., et al. ( 2012 ), Frost flowers growing in the Arctic ocean‐atmosphere‐sea ice‐snow interface: 1. Chemical composition, J. Geophys. Res., 117, D00R09, doi: 10.1029/2011JD016460.
dc.identifier.citedreferenceDruckenmiller, M. L., H. Eicken, M. A. Johnson, D. J. Pringle, and C. C. Williams ( 2009 ), Toward an integrated coastal sea‐ice observatory: System components and a case study at Barrow, Alaska, Cold Reg. Sci. Technol., 56 ( 2–3 ), 61 – 72, doi: 10.1016/j.coldregions.2008.12.003.
dc.identifier.citedreferenceDusek, U., et al. ( 2006 ), Size matters more than chemistry for cloud‐nucleating ability of aerosol particles, Science, 312 ( 5778 ), 1375 – 1378, doi: 10.1126/science.1125261.
dc.identifier.citedreferenceEicken, H., J. Jones, R. Mv, C. Kambhamettu, F. J. Meyer, A. Mahoney, and M. L. Druckenmiller ( 2011 ), Environmental security in arctic ice‐covered seas: From strategy to tactics of hazard identification and emergency response, Mar. Technol. Soc. J., 45 ( 3 ), 37 – 48.
dc.identifier.citedreferenceGong, S. L., L. A. Barrie, and M. Lazare ( 2002 ), Canadian Aerosol Module (CAM): A size‐segregated simulation of atmospheric aerosol processes for climate and air quality models—2. Global sea‐salt aerosol and its budgets, J. Geophys. Res., 107 ( D24 ), 4779, doi: 10.1029/2001JD002004.
dc.identifier.citedreferenceGrammatika, M., and W. B. Zimmerman ( 2001 ), Microhydrodynamics of flotation processes in the sea surface layer, Dyn. Atmos. Oceans, 34 ( 2–4 ), 327 – 348, doi: 10.1016/S0377-0265(01)00073-2.
dc.identifier.citedreferenceHara, K., K. Osada, K. Matsunaga, Y. Iwasaka, T. Shibata, and K. Furuya ( 2002 ), Atmospheric inorganic chlorine and bromine species in Arctic boundary layer of the winter/spring, J. Geophys. Res., 107 ( D18 ), 4361, doi: 10.1029/2001JD001008.
dc.identifier.citedreferenceHeld, A., I. M. Brooks, C. Leck, and M. Tjernström ( 2011a ), On the potential contribution of open lead particle emissions to the central Arctic aerosol concentration, Atmos. Chem. Phys., 11, 3093‐3105, doi: 10.5194/acp-11-3093-2011.
dc.identifier.citedreferenceHeld, A., D. A. Orsini, P. Vaattovaara, M. Tjernström, and C. Leck ( 2011b ), Near‐surface profiles of aerosol number concentration and temperature over the Arctic Ocean, Atmos. Meas. Tech., 4 ( 8 ), 1603 – 1616, doi: 10.5194/amt-4-1603-2011.
dc.identifier.citedreferenceJacobi, H. W., D. Voisin, J. L. Jaffrezo, J. Cozic, and T. A. Douglas ( 2012 ), Chemical composition of the snowpack during the OASIS spring campaign 2009 at Barrow, Alaska, J. Geophys. Res., 117, D00R13, doi: 10.1029/2011JD016654.
dc.identifier.citedreferenceJohnson, B. D., and P. J. Wangersky ( 1987 ), Microbubbles: Stabilization by monolayers of adsorbed particles, J. Geophys. Res., 92 ( C13 ), 14,641 – 14,647, doi: 10.1029/JC092iC13p14641.
dc.identifier.citedreferenceKeene, W. C., A. A. P. Pszenny, J. N. Galloway, and M. E. Hawley ( 1986 ), Sea‐salt corrections and interpretation of constituent ratios in marine precipitation, J. Geophys. Res., 91 ( D6 ), 6647 – 6658, doi: 10.1029/JD091id06p06647.
dc.identifier.citedreferenceKeene, W. C., R. Sander, A. A. P. Pszenny, R. Vogt, P. J. Crutzen, and J. N. Galloway ( 1998 ), Aerosol pH in the marine boundary layer, J. Aerosol Sci., 29 ( 3 ), 339 – 356, doi: 10.1016/s0021-8502(97)10011-8.
dc.identifier.citedreferenceKeene, W. C., et al. ( 2007 ), Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air‐sea interface, J. Geophys. Res., 112, D21202, doi: 10.1029/2007JD008464.
dc.identifier.citedreferenceLeck, C., and C. Persson ( 1996 ), Seasonal and short‐term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer during summer and autumn, Tellus B, 48 ( 2 ), doi: 10.3402/tellusb.v48i2.15891.
dc.identifier.citedreferenceLeck, C., and E. K. Bigg ( 1999 ), Aerosol production over remote marine areas—A new route, Geophys. Res. Lett., 26 ( 23 ), 3577 – 3580, doi: 10.1029/1999GL010807.
dc.identifier.citedreferenceLeck, C., and E. Svensson ( 2015 ), Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer, Atmos. Chem. Phys., 15 ( 5 ), 2545 – 2568, doi: 10.5194/acp-15-2545-2015.
dc.identifier.citedreferenceLeck, C., M. Norman, E. K. Bigg, and R. Hillamo ( 2002 ), Chemical composition and sources of the high Arctic aerosol relevant for cloud formation, J. Geophys. Res., 107, 4135, doi: 10.1029/2001JC001463.
dc.identifier.citedreferenceLegrand, M., X. Yang, S. Preunkert, and N. Theys ( 2016 ), Year‐round records of sea salt, gaseous, and particulate inorganic bromine in the atmospheric boundary layer at coastal (Dumont d’Urville) and central (Concordia) East Antarctic sites, J. Geophys. Res. Atmos., 121, 997 – 1023, doi: 10.1002/2015JD024066.
dc.identifier.citedreferenceLewis, E. R., and S. E. Schwartz ( 2004 ), Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review, AGU, Washington, D. C.
dc.identifier.citedreferenceLieb‐Lappen, R. M., and R. W. Obbard ( 2015 ), The role of blowing snow in the activation of bromine over first‐year Antarctic sea ice, Atmos. Chem. Phys., 15 ( 13 ), 7537 – 7545, doi: 10.5194/acp-15-7537-2015.
dc.identifier.citedreferenceMahoney, A. R., H. Eicken, A. G. Gaylord, and R. Gens ( 2014 ), Landfast sea ice extent in the Chukchi and Beaufort Seas: The annual cycle and decadal variability, Cold Reg. Sci. Technol., 103, 41 – 56, doi: 10.1016/j.coldregions.2014.03.003.
dc.identifier.citedreferenceMaslanik, J., J. Stroeve, C. Fowler, and W. Emery ( 2011 ), Distribution and trends in Arctic sea ice age through spring 2011, Geophys. Res. Lett., 38, L13502, doi: 10.1029/2011GL047735.
dc.identifier.citedreferenceMcInnes, L. M., D. S. Covert, P. K. Quinn, and M. S. Germani ( 1994 ), Measurements of chloride depletion and sulfur enrichment in individual sea‐salt particles collected from the remote marine boundary layer, J. Geophys. Res., 99 ( D4 ), 8257, doi: 10.1029/93JD03453.
dc.identifier.citedreferenceMonahan, E. C., and I. G. O’Muircheartaigh ( 1986 ), Whitecaps and the passive remote sensing of the ocean surface, Int. J. Remote Sens., 7 ( 5 ), 627 – 642, doi: 10.1080/01431168608954716.
dc.identifier.citedreferenceNewberg, J. T., B. M. Matthew, and C. Anastasio ( 2005 ), Chloride and bromide depletions in sea‐salt particles over the northeastern Pacific Ocean, J. Geophys. Res., 110, D06209, doi: 10.1029/2004JD005446.
dc.identifier.citedreferenceNilsson, E. D., and Ü. Rannik ( 2001 ), Turbulent aerosol fluxes over the Arctic Ocean: 1. Dry deposition over sea and pack ice, J. Geophys. Res., 106, 32,125‐32,137, doi: 10.1029/2000JD900605.
dc.identifier.citedreferenceNilsson, E. D., U. Rannik, E. Swietlicki, C. Leck, P. P. Aalto, J. Zhou, and M. Norman ( 2001 ), Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind‐driven sources from the sea, J. Geophys. Res., 106 ( D23 ), 32,139 – 32,154, doi: 10.1029/2000JD900747.
dc.identifier.citedreferenceNorman, A. L., L. A. Barrie, D. Toom‐Sauntry, A. Sirois, H. R. Krouse, S. M. Li, and S. Sharma ( 1999 ), Sources of aerosol sulphate at Alert: Apportionment using stable isotopes, J. Geophys. Res., 104 ( D9 ), 11,619 – 11,631, doi: 10.1029/1999JD900078.
dc.identifier.citedreferenceNorris, S. J., I. M. Brooks, G. de Leeuw, A. Sirevaag, C. Leck, B. J. Brooks, C. E. Birch, and M. Tjernström ( 2011 ), Measurements of bubble size spectra within leads in the Arctic summer pack ice, Ocean Sci., 7 ( 1 ), 129 – 139, doi: 10.5194/os-7-129-2011.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.