Show simple item record

Classification of TP53 mutations and HPV predict survival in advanced larynx cancer

dc.contributor.authorScheel, Adam
dc.contributor.authorBellile, Emily
dc.contributor.authorMcHugh, Jonathan B.
dc.contributor.authorWalline, Heather M.
dc.contributor.authorPrince, Mark E.
dc.contributor.authorUrba, Susan
dc.contributor.authorWolf, Gregory T.
dc.contributor.authorEisbruch, Avraham
dc.contributor.authorWorden, Francis
dc.contributor.authorCarey, Thomas E.
dc.contributor.authorBradford, Carol
dc.date.accessioned2016-10-17T21:17:42Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationScheel, Adam; Bellile, Emily; McHugh, Jonathan B.; Walline, Heather M.; Prince, Mark E.; Urba, Susan; Wolf, Gregory T.; Eisbruch, Avraham; Worden, Francis; Carey, Thomas E.; Bradford, Carol (2016). "Classification of TP53 mutations and HPV predict survival in advanced larynx cancer." The Laryngoscope 126(9): E292-E299.
dc.identifier.issn0023-852X
dc.identifier.issn1531-4995
dc.identifier.urihttps://hdl.handle.net/2027.42/134126
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTP53
dc.subject.otherp53
dc.subject.otherBcl‐xL
dc.subject.othercyclin D1
dc.subject.otherHPV
dc.subject.otherlarynx cancer
dc.titleClassification of TP53 mutations and HPV predict survival in advanced larynx cancer
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOtolaryngology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134126/1/lary25915-sup-0001-suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134126/2/lary25915_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134126/3/lary25915.pdf
dc.identifier.doi10.1002/lary.25915
dc.identifier.sourceThe Laryngoscope
dc.identifier.citedreferenceLi Y‐J, Wei Z‐M, Meng Y‐X, Ji X‐R. b‐Catenin up‐regulates the expression of cyclinD1, c‐myc and MMP‐7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol 2005; 11: 2117 – 2123.
dc.identifier.citedreferenceWillis SN, Adams JM. Life in the balance: how BH3‐only proteins induce apoptosis. Curr Opin Cell Biol 2005; 17: 617 – 625.
dc.identifier.citedreferenceSteinberg BM, Abramson AL. Laryngeal papillomas. Clin Dermatol 1985; 3: 130 – 138.
dc.identifier.citedreferenceChaturvedi AK, Graubard BI, Pickard RK, Xiao W, Gillison ML. High‐risk oral human papillomavirus load in the US population, National Health and Nutrition Examination Survey 2009–2010. J Infect Dis 2014; 210: 441 – 447.
dc.identifier.citedreferenceMcKaig RG, Baric RS, Olshan AF. Human papillomavirus and head and neck cancer: epidemiology and molecular biology. Head Neck 1998; 20: 250 – 265.
dc.identifier.citedreferenceGillison ML, Koch WM, Shah KV. Human papillomavirus in head and neck squamous cell carcinoma: are some head and neck cancers a sexually transmitted disease? Curr Opin Oncol 1999; 11: 191 – 199.
dc.identifier.citedreferenceWalline HM, Komarck C, McHugh JB, et al. High‐risk human papillomavirus detection in oropharyngeal, nasopharyngeal, and oral cavity cancers: comparison of multiple methods. JAMA Otolaryngol Head Neck Surg 2013; 139: 1320 – 1327.
dc.identifier.citedreferenceStenmark MH, McHugh JB, Schipper M, et al. Nonendemic HPV‐positive nasopharyngeal carcinoma: association with poor prognosis. Int J Radiat Oncol Biol Phys 2014; 88: 580 – 588.
dc.identifier.citedreferenceMaxwell JH, Kumar B, Feng FY, et al. HPV‐positive/p16‐positive/EBV‐negative nasopharyngeal carcinoma in white North Americans. Head Neck 2010; 32: 562 – 567.
dc.identifier.citedreferenceKato S, Han S‐Y, Liu W, et al. Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high‐resolution missense mutation analysis. Proc Natl Acad Sci U S A 2003; 100: 8424 – 8429.
dc.identifier.citedreferenceFreed‐Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268 – 1286.
dc.identifier.citedreferenceLayland MK, Sessions DG, Lenox J. The influence of lymph node metastasis in the treatment of squamous cell carcinoma of the oral cavity, oropharynx, larynx, and hypopharynx: N0 versus N+. Laryngoscope 2005; 115: 629 – 639.
dc.identifier.citedreferenceGuardavaccaro D, Corrente G, Covone F, et al. Arrest of G(1)‐S progression by the p53‐inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol Cell Biol 2000; 20: 1797 – 1815.
dc.identifier.citedreferenceKawakubo H, Carey JL, Brachtel E, et al. Expression of the NF‐[kappa]B‐responsive gene BTG2 is aberrantly regulated in breast cancer. Oncogene 2004; 23: 8310 – 8319.
dc.identifier.citedreferenceMinn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl‐xL can confer a multidrug resistance phenotype. Blood 1995; 86: 1903 – 1910.
dc.identifier.citedreferenceShtutman M, Zhurinsky J, Simcha I, et al. The cyclin D1 gene is a target of the beta‐catenin/LEF‐1 pathway. Proc Natl Acad Sci U S A 1999; 96: 5522 – 5527.
dc.identifier.citedreferenceRampias T, Giagini A, Siolos S, et al. RAS/PI3K crosstalk and cetuximab resistance in head and neck squamous cell carcinoma. Clin Cancer Res 2014; 20: 2933 – 2946.
dc.identifier.citedreferencePoeta ML, Manola J, Goldwasser MA, et al. TP53 mutations and survival in squamous‐cell carcinoma of the head and neck. N Engl J Med 2007; 357: 2552 – 2561.
dc.identifier.citedreferenceGillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000; 92: 709 – 720.
dc.identifier.citedreferenceSyrjanen S. Human papillomavirus (HPV) in head and neck cancer. J Clin Virol 2005; 32 ( suppl 1 ): S59 – S66.
dc.identifier.citedreferenceMunoz N, Castellsague X, de Gonzalez AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006; 24 ( suppl 3 ): S1 – S10.
dc.identifier.citedreferenceChaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29: 4294 – 4301.
dc.identifier.citedreferenceMarur S, D’Souza G, Westra WH, Forastiere AA. HPV‐associated head and neck cancer: a virus‐related cancer epidemic. Lancet Oncol 2010; 11: 781 – 789.
dc.identifier.citedreferenceCancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517: 576 – 582.
dc.identifier.citedreferenceQuabius ES, Haag J, Kuhnel A, et al. Geographical and anatomical influences on human papillomavirus prevalence diversity in head and neck squamous cell carcinoma in Germany. Int J Oncol 2015; 46: 414 – 422.
dc.identifier.citedreferenceKrupar R, Hartl M, Wirsching K, Dietmaier W, Strutz J, Hofstaedter F. Comparison of HPV prevalence in HNSCC patients with regard to regional and socioeconomic factors. Eur Arch Otorhinolaryngol 2014; 271: 1737 – 1745.
dc.identifier.citedreferenceLacour S, Hammann A, Grazide S, et al. Cisplatin‐induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 2004; 64: 3593 – 3598.
dc.identifier.citedreferenceGadhikar MA, Sciuto MR, Alves MVO, et al. Chk1/2 Inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther 2013; 12: 1860 – 1873.
dc.identifier.citedreferenceSancho‐Martinez SM, Piedrafita FJ, Cannata‐Andia JB, Lopez‐Novoa JM, Lopez‐Hernandez FJ. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol Sci 2011; 122: 73 – 85.
dc.identifier.citedreferenceSiegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11 – 30.
dc.identifier.citedreferenceWolf GT. Induction chemotherapy plus radiation compared with surgery plus radiation in patients with advanced laryngeal‐cancer. N Engl J Med 1991; 324: 1685 – 1690.
dc.identifier.citedreferenceUrba S, Wolf G, Eisbruch A, et al. Single‐cycle induction chemotherapy selects patients with advanced laryngeal cancer for combined chemoradiation: a new treatment paradigm. J Clin Oncol 2006; 24: 593 – 598.
dc.identifier.citedreferenceBradford CR, Kumar B, Bellile E, et al. Biomarkers in advanced larynx cancer. Laryngoscope 2014; 124: 179 – 187. doi: 10.1002/lary.24245.
dc.identifier.citedreferenceAhomadegbe JC, Barrois M, Fogel S, et al. High incidence of p53 alterations (mutation, deletion, overexpression) in head and neck primary tumors and metastases; absence of correlation with clinical outcome. Frequent protein overexpression in normal epithelium and in early non‐invasive lesions. Oncogene 1995; 10: 1217 – 1227.
dc.identifier.citedreferenceVousden KH, Lu X. Live or let die: the cell’s response to p53. Nat Rev Cancer 2002; 2: 594 – 604.
dc.identifier.citedreferenceCoutts A, La Thangue N. The p53 response during DNA damage: impact of transcriptional cofactors. Biochem Soc Symp 2006: 181 – 189.
dc.identifier.citedreferenceSermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2011; 2: e164.
dc.identifier.citedreferenceVousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413 – 431.
dc.identifier.citedreferenceWiesmuller L. Genetic stabilization by p53 involves growth regulatory and repair pathways. J Biomed Biotechnol 2001; 1: 7 – 10.
dc.identifier.citedreferenceBradford CR, Zhu S, Ogawa H, et al. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck 2003; 25: 654 – 661.
dc.identifier.citedreferenceTemam S, Flahault A, Perie S, et al. p53 gene status as a predictor of tumor response to induction chemotherapy of patients with locoregionally advanced squamous cell carcinomas of the head and neck. J Clin Oncol 2000; 18: 385 – 394.
dc.identifier.citedreferenceBradford CR, Zhu S, Poore J, et al. p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Arch Otolaryngol Head Neck Surg 1997; 123: 605 – 609.
dc.identifier.citedreferenceNeskey DM, Osman AA, Ow TJ, et al. Evolutionary action score of TP53 identifies high‐risk mutations associated with decreased survival and increased distant metastases in head and neck cancer. Cancer Res 2015; 75: 1527 – 1536. doi: 10.1158/0008‐5472.CAN‐14‐2735.
dc.identifier.citedreferencePetitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622 – 629.
dc.identifier.citedreferenceKumar B, Cordell KG, D’Silva N, et al. Expression of p53 and Bcl‐xL as predictive markers for larynx preservation in advanced laryngeal cancer. Arch Otolaryngol Head Neck Surg 2008; 134: 363.
dc.identifier.citedreferenceReed JC, Miyashita T, Takayama S, et al. BCL‐2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 1996; 60: 23 – 32.
dc.identifier.citedreferenceChao DT, Korsmeyer SJ. BCL‐2 family: regulators of cell death. Annu Rev Immunol 1998; 16: 395 – 419.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.