Show simple item record

Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom

dc.contributor.authorHartmann Siantar, C. L.
dc.contributor.authorWalling, R. S.
dc.contributor.authorDaly, T. P.
dc.contributor.authorFaddegon, B.
dc.contributor.authorAlbright, N.
dc.contributor.authorBergstrom, Paul
dc.contributor.authorBielajew, A. F.
dc.contributor.authorChuang, C.
dc.contributor.authorGarrett, D.
dc.contributor.authorHouse, R. K.
dc.contributor.authorKnapp, D.
dc.contributor.authorWieczorek, D. J.
dc.contributor.authorVerhey, L. J.
dc.date.accessioned2017-01-06T20:47:54Z
dc.date.available2017-01-06T20:47:54Z
dc.date.issued2001-07
dc.identifier.citationHartmann Siantar, C. L.; Walling, R. S.; Daly, T. P.; Faddegon, B.; Albright, N.; Bergstrom, Paul; Bielajew, A. F.; Chuang, C.; Garrett, D.; House, R. K.; Knapp, D.; Wieczorek, D. J.; Verhey, L. J. (2001). "Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom." Medical Physics 28(7): 1322-1337.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134919
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Association of Physicists in Medicine
dc.subject.otherMonte Carlo methods
dc.subject.otherX‐rays
dc.subject.otherstatistical analysis
dc.subject.otherRadiation therapy
dc.subject.otherContaminants
dc.subject.otherStatistical analysis
dc.subject.otherPhoton scattering
dc.subject.otherMonte Carlo methods
dc.subject.otherbackscatter
dc.subject.otherDosimetry
dc.subject.otherPhotons
dc.subject.otherElectron sources
dc.subject.otherBackscattering
dc.subject.otherElectron scattering
dc.subject.otherElectron beams
dc.subject.otherMonte Carlo
dc.subject.otherradiation therapy
dc.subject.othertreatment planning
dc.subject.otherdose calculation
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherTreatment strategy
dc.subject.otherProbability theory, stochastic processes, and statistics
dc.subject.otherradiation therapy
dc.subject.otherdosimetry
dc.titleDescription and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumUniversity of Michigan
dc.contributor.affiliationotherLawrence Livermore National Laboratory, Livermore, California 94550
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of California San Francisco, San Francisco, California 94143‐1708
dc.contributor.affiliationotherLawrence Livermore National Laboratory, Livermore, California 94550
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of California San Francisco, San Francisco, California 94143‐1708
dc.contributor.affiliationotherLawrence Livermore National Laboratory, Livermore, California 94550
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of California San Francisco, San Francisco, California 94143‐1708
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134919/1/mp1551.pdf
dc.identifier.doi10.1118/1.1381551
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceD. E. Cullen, M. H. Chen, J. H. Hubbell, S. T. Perkins, E. F. Plechaty, J. A. Rathkopf, and J. H. Scofield, Lawrence Livermore National Laboratory Report UCRL‐50400, Volume 6, LLNL, Livermore, 1989.
dc.identifier.citedreferenceK. R. Shortt, C. K. Ross, A. F. Bielajew, and D. W. O. Rogers, “ Electron beam dose distributions near standard inhomogeneities,” Phys. Med. Biol. PHMBA7 --> 31, 235 – 249 ( 1986 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceMonte Carlo Transport of Electrons and Photons, edited by T. M. Jenkins, W. R. Nelson, A. Rindi, A. E. Nahum, and D. W. O. Rogers (Plenum, New York, 1988).
dc.identifier.citedreferenceT. R. Mackie, “Applications of the Monte Carlo method in radiotherapy,” Dosimetry of Ionizing Radiation Vol. 3, edited by K. Kase, B. Bjarngard, and F. H. Attix (Academic, New York, 1990), pp. 541–620.
dc.identifier.citedreferenceP. Andreo, “ Monte Carlo techniques in medical radiation physics,” Phys. Med. Biol. PHMBA7 --> 26, 861 – 920 ( 1991 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceR. Mohan, “Why Monte Carlo?,” in Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy, Salt Lake City, UT, edited by D. D. Leavitt and G. Starkschall (Medical Physics Publishing, Madison, WI, 1997), pp. 16–18.
dc.identifier.citedreferenceJ. J. DeMarco, T. D. Solberg, and J. B. Smathers, “ A CT‐based Monte Carlo simulation tool for dosimetry planning and analysis,” Med. Phys. MPHYA6 --> 25, 1 – 11 ( 1998 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceM. R. Arnfield, C. Hartmann Siantar, J. Siebers, P. Garmon, L. Cox, and R. Mohan, “ The impact of electron transport on the accuracy of computed dose,” Med. Phys. MPHYA6 --> 27, 1266 – 1274 ( 2000 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceL. Wang, C‐S. Chui, and M. Lovelock, “ A patient‐specific Monte Carlo dose‐calculation method for photon beams,” Med. Phys. MPHYA6 --> 25, 867 – 878 ( 1998 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceH. Neuenschwander, T. R. Mackie, and P. J. Reckwerdt, “ MMC—a high‐performance Monte Carlo code for electron beam treatment planning,” Phys. Med. Biol. PHMBA7 --> 40, 543 – 574 ( 1995 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceP. J. Keall and P. W. Hoban, “ Super‐Monte Carlo: A 3D electron beam dose calculation algorithm,” Med. Phys. MPHYA6 --> 23, 2023 – 2034 ( 1996 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceC. L. Hartmann Siantar et al., “Lawrence Livermore National Laboratory’s PEREGRINE Project,” in Ref. 5, pp. 19–22.
dc.identifier.citedreferenceM. Fippel, “ Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm,” Med. Phys. MPHYA6 --> 26, 1466 – 1475 ( 1999 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceM. J. Berger, Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles, in Methods in Computational Physics Vol. 1 (Academic, New York, 1963), p. 135.
dc.identifier.citedreferenceJ. Sempau, S. J. Wilderman, and A. F. Bielajew, “ DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations,” Phys. Med. Biol. PHMBA7 --> 45, 2263 – 2291 ( 2000 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceC.‐M. Ma, J. S. Li, T. Pawlicki, S. B. Jiang, and J. Deng, “ MCDOSE —A Monte Carlo dose calculation tool for radiation therapy treatment planning,” XIIIth International Conference on the Use of Computers in Radiation Therapy (Springer, New York, 2000).
dc.identifier.citedreferenceI. Kawrakow and M. Fippel, “ Investigation of variance reduction techniques for Monte Carlo photon dose calculations using XVMC,” Phys. Med. Biol. PHMBA7 --> 45, 2163 – 2183 ( 2000 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceR. Mohan, C. Chui, and L. Lidofsky, “ Energy and angular distributions of photons from medical linear accelerators,” Med. Phys. MPHYA6 --> 12, 592 – 597 ( 1985 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceJ. V. Siebers, P. J. Keall, B. Libby, and R. Mohan, “ Comparison of EGS4 and MCNP4B Monte Carlo codes for generation of photon phase space distributions for a Varian 2100C,” Phys. Med. Biol. PHMBA7 --> 44, 3009 – 3026 ( 1999 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceD. W. O. Rogers, B. A. Faddegon, G. X. Ding, C‐M. Ma, J. We, and T. R. Mackie, “ BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. MPHYA6 --> 22, 503 – 524 ( 1995 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceD. M. J. Lovelock, C. S. Chui, and R. Mohan, “ A Monte Carlo model of photon beams used in radiation therapy,” Med. Phys. MPHYA6 --> 22, 1387 – 1394 ( 1995 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceG. Küster, T. Bortfeld, and W. Schlegel, “Monte Carlo simulations of radiation beams from radiotherapy units and beam limiting devices using the program GEANT,” in Ref. 5, pp. 150–152.
dc.identifier.citedreferenceB. Faddegon, J. Balogh, R. Mackenzie, and D. Scora, “ Clinical considerations of Monte Carlo for electron radiotherapy treatment planning,” Radiat. Phys. Chem. RPCHDM --> 53, 217 – 227 ( 1998 ). RPCHDM --> 0969‐806X
dc.identifier.citedreferenceC.‐M. Ma and S. B. Jiang, “ Monte Carlo modeling of electron beams from medical accelerators,” Phys. Med. Biol. PHMBA7 --> 44, R157 – R189 ( 1999 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceA. E. Schach von Wittenau, L. J. Cox, P. M. Bergstrom, W. P. Chandler, C. L. Hartmann Siantar, and R. Mohan, “ Correlated histogram representation of Monte Carlo derived medical accelerator photon‐output phase space,” Med. Phys. MPHYA6 --> 26, 1196 – 1211 ( 1999 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceJ. Deng, S. B. Jiang, A. Kapur, J. Li, T. Pawlicki, and C‐M. Ma, “ Photon beam characterization and modeling for Monte Carlo treatment planning,” Phys. Med. Biol. PHMBA7 --> 45, 411 – 427 ( 2000 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceB. A. Faddegon, P. O’Brien, and D. L. D. Mason, “ The flatness of Siemens linear accelerator x‐ray fields,” Med. Phys. MPHYA6 --> 26, 220 – 228 ( 1999 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceC.‐M. Ma, B. A. Faddegon, D. W. O. Rogers, and T. R. Mackie, “ Accurate characterization of Monte Carlo calculated electron beams for radiotherapy,” Med. Phys. MPHYA6 --> 24, 401 ( 1997 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceJ. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, J. Phys. Chem. Ref. Data JPCRBU --> 4, 471 ( 1975 ). JPCRBU --> 0047‐2689
dc.identifier.citedreferenceC. M. Davisson and R. D. Evans, Rev. Mod. Phys. RMPHAT --> 24, 79 ( 1952 ). RMPHAT --> 0034‐6861
dc.identifier.citedreferenceJ. H. Hubbell, H. A. Gimm, and I. Overbo, J. Phys. Chem. Ref. Data JPCRBU --> 9, 1023 ( 1980 ). JPCRBU --> 0047‐2689
dc.identifier.citedreference“International Commission on Radiation Units and Measurements (ICRU),” ICRU Report No. 37, ICRU, Bethesda, 1984.
dc.identifier.citedreferenceF. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (Wiley, New York, 1986).
dc.identifier.citedreferenceW. R. Nelson, H. Hirayama, and D. W. O. Rogers, “The EGS4 Code System,” Report No. SLAC—265, Stanford Linear Accelerator Center, Stanford, CA, 1985.
dc.identifier.citedreferenceA. F. Bielajew and D. W. O. Rogers, “ Effects of a Møller cross section error on the EGS4 code,” Med. Phys. MPHYA6 --> 23, 1153 ( 1996 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceS. T. Perkins, D. E. Cullen, and S. M. Seltzer, Lawrence Livermore National Laboratory Report No. UCRL‐50400, Vol. 31, LLNL, Livermore, 1991.
dc.identifier.citedreferenceA. F. Bielajew, R. Mohan, and C. Chui, “Improved bremsstrahlung photon angular sampling in the EGS4 code system,” National Research Council of Canada Report No. PIRS‐0203, 1989.
dc.identifier.citedreferenceB. A. Faddegon, C. K. Ross, and D. W. O. Rogers, “ Angular distribution of bremsstrahlung from 15‐MeV electrons incident on thick targets of Be, Al, and Pb,” Med. Phys. MPHYA6 --> 18, 727 – 739 ( 1991 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceI. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, 1991), p. 40.
dc.identifier.citedreferenceG.‐Z. Moliére, “ Theorie der Streuung schneller geladener Teilchen. I. Einzelstreuung am abgeschirmten Coulomb‐Field,” Z. Naturforsch. A ZENAAU --> 2A, 133 – 145 ( 1947 ). ZENAAU --> 0044‐3166
dc.identifier.citedreferenceJ. Barò, J. Sempau, J. M. Fernàndez‐Varea, and F. Salvat, “ PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 100, 31 – 46 ( 1995 ). NIMBEU --> 0168‐583X
dc.identifier.citedreferenceI. Kawrakow and A. Bielajew, “ On the condensed history technique for electron transport,” Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 142, 253 – 280 ( 1998 ). NIMBEU --> 0168‐583X
dc.identifier.citedreferenceH. W. Lewis, “ Multiple scattering in an infinite medium,” Phys. Rev. PHRVAO --> 78, 526 – 529 ( 1950 ). PHRVAO --> 0031‐899X
dc.identifier.citedreferenceA. F. Bielajew, D. W. O. Rogers, and A. E. Nahum, “ Monte Carlo simulation of ion chamber response to 60 Co —Resolution of anomalies associated with interfaces,” Phys. Med. Biol. PHMBA7 --> 30, 419 – 428 ( 1985 ). PHMBA7 --> 0031‐9155
dc.identifier.citedreferenceA. E. Schach von Wittenau, P. M. Bergstrom, Jr., and L. J. Cox, “ Patient‐dependent beam‐modifier physics in Monte Carlo photon dose calculations,” Med. Phys. MPHYA6 --> 27, 935 – 947 ( 2000 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceS. M. Ross, Simulation, 2nd ed. (Academic, San Diego, 1997), p. 116.
dc.identifier.citedreferenceA. F. Bielajew and D. W. O. Rogers, “ PRESTA: The parameter reduced electron‐step transport algorithm for electron Monte Carlo transport,” Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 18, 165 – 181 ( 1987 ). NIMBEU --> 0168‐583X
dc.identifier.citedreferenceK. L. Lam, M. S. Muthuswamy, and R. K. Ten Haken, “ Measurement of backscatter to the monitor chamber of medical accelerators using target charge,” Med. Phys. MPHYA6 --> 25, 334 – 338 ( 1998 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceC. Dunzenli, B. McClean, and C. Field, “ Backscatter into the beam monitor chamber: Implications for dosimetry of asymmetric collimators,” Med. Phys. MPHYA6 --> 20, 363 – 367 ( 1993 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceH. H. Liu, T. R. Mackie, E. C. McCullough, “ Modeling photon output caused by backscattered radiation into the monitor chamber from collimator jaws using a Monte Carlo technique,” Med. Phys. MPHYA6 --> 27, 737 – 744 ( 2000 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceD. Sheikh‐Bagheri, D. W. O. Rogers, C. K. Ross, and J. P. Seuntjens, “ Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac,” Med. Phys. MPHYA6 --> 27, 2256 – 2266 ( 2000 ). MPHYA6 --> 0094‐2405
dc.identifier.citedreferenceM. Westermark, J. Arndt, B. Nilsson, and A. Brahme, “ Comparative dosimetry in narrow high‐energy photon beams,” Phys. Med. Biol. PHMBA7 --> 45, 685 – 702 ( 2000 ). PHMBA7 --> 0031‐9155
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.