Show simple item record

Improving IMRT delivery efficiency using intensity limits during inverse planning

dc.contributor.authorCoselmon, Martha M.
dc.contributor.authorMoran, Jean M.
dc.contributor.authorRadawski, Jeffrey D.
dc.contributor.authorFraass, Benedick A.
dc.date.accessioned2017-01-06T20:50:07Z
dc.date.available2017-01-06T20:50:07Z
dc.date.issued2005-05
dc.identifier.citationCoselmon, Martha M.; Moran, Jean M.; Radawski, Jeffrey D.; Fraass, Benedick A. (2005). "Improving IMRT delivery efficiency using intensity limits during inverse planning." Medical Physics 32(5): 1234-1245.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135056
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherDosimetry
dc.subject.otherTissues
dc.subject.otherMultileaf collimators
dc.subject.otherCancer
dc.subject.otherOptimization
dc.subject.otherLinear accelerators
dc.subject.otherOptic nerve structure
dc.subject.otherSequence analysis
dc.subject.otherTreatment strategy
dc.subject.otherWedges and compensators
dc.subject.otherAncillary equipment
dc.subject.otherradiation therapy
dc.subject.otherintensity modulation
dc.subject.otherdosimetry
dc.subject.otherbiological organs
dc.subject.otherIntensity modulated radiation therapy
dc.subject.otherBrain
dc.titleImproving IMRT delivery efficiency using intensity limits during inverse planning
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135056/1/mp5545.pdf
dc.identifier.doi10.1118/1.1895545
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceD. L. McShan and B. A. Fraass, “ 3‐D treatment planning: II. Integration of gray scale images and solid surface graphics,” in Ref. 27, pp. 41 – 44.
dc.identifier.citedreferenceE. J. Hall and C. Wu, “ Radiation‐induced second cancers: The impact of 3D‐CRT and IMRT,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(03)00073‐7 56, 83 – 88 ( 2003 ).
dc.identifier.citedreferenceJ. Galvin, G. Ezzell, A. Eisbruch, C. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia, T. Lomax, D. Low, and J. Palta, “ Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/j.ijrobp.2003.12.008 58, 1616 – 1634 ( 2004 ).
dc.identifier.citedreferenceM. Alber, and F. Nüsslin, “ Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/46/12/311 46, 3229 – 3239 ( 2001 ).
dc.identifier.citedreferenceP. S. Cho, and R. J Marks II, “ Hardware‐sensitive optimization for intensity modulated radiotherapy,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/45/2/312 45, 429 – 440 ( 2000 ).
dc.identifier.citedreferenceJ. Seco, P. M. Evans, and S. Webb, “ An optimization algorithm that incorporates IMRT delivery constraints,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 47, 899 – 915 ( 2002 ).
dc.identifier.citedreferenceA. Beavis, P. Ganney, V. Whitton, and L. Xing, “ Optimization of the step‐and‐shoot leaf sequence for delivery of intensity modulated radiation therapy using a variable division scheme,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/46/9/314 46, 2457 – 2465 ( 2001 ).
dc.identifier.citedreferenceS. M. Crooks, L. F. McAven, D. F. Robinson, and L. Xing, “ Minimizing delivery time and monitor units in static IMRT by leaf‐sequencing,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/47/17/305 47, 3105 – 3116 ( 2002 ).
dc.identifier.citedreferenceM. Langer, V. Thai, and L. Papiez, “ Improved leaf sequencing reduces segments or monitor units needed to delivery IMRT using multileaf collimators,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1420392 28, 2450 – 2458 ( 2001 ).
dc.identifier.citedreferenceD. W. Litzenberg, J. M. Moran, and B. A. Fraass, “ Incorporation of real‐ istic delivery limitations into dynamic MLC treatment delivery,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1470499 29, 810 – 820 ( 2002 ).
dc.identifier.citedreferenceY. Yang and L. Xing, “ Incorporating leaf transmission and head scatter corrections into step‐and‐shoot leaf sequences for IMRT,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(02)04417‐6 55, 1121 – 1134 ( 2002 ).
dc.identifier.citedreferenceL. Ma, “ Smoothing intensity‐modulated treatment delivery under hardware constraints,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1521121 29, 2937 – 2295 ( 2002 ).
dc.identifier.citedreferenceX. Sun and P. Xia, “ A new smoothing procedure to reduce delivery segments for static MLC‐based IMRT planning,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1713279 31, 1158 – 1165 ( 2004 ).
dc.identifier.citedreferenceS. Webb, D. Convery, and P. Evans, “ Inverse planning with constraints to generate smoothed intensity‐modulated beams,” Med. Phys. MPHYA6 --> 0094‐2405 43, 2785 – 2794 ( 1998 ).
dc.identifier.citedreferenceB. A. Fraass and D. L. McShan, “ 3‐D treatment planning: I. Overview of a clinical planning system ” in The Use of Computers in Radiation Therapy. edited by I. A.D. Bruinvis, F. H. van der Giessen, H. J. van Kleffens, and F. W. Wittkamper ( North‐Holland, Elsevier Science, Amsterdam, 1987 ), pp. 273 – 276.
dc.identifier.citedreferenceB. A. Fraass, D. L. McShan, and K. J. Weeks, “ 3‐D treatment planning: III. Complete beam’s‐eye‐view planning capabilities,” in Ref. 27, pp. 193 – 196.
dc.identifier.citedreferenceB. A. Fraass, D. L. McShan, R. K.Ten Haken, and K. M. Hutchins, “ 3‐D treatment planning: V. A Fast 3‐D photon calculation model,” in Ref. 27, pp. 521 – 527.
dc.identifier.citedreferenceD. L. McShan, B. A. Fraass, and A. S. Lichter, “ Full integration of the beam’s eye view concept into computerized treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 18, 1485 – 1494 ( 1990 ).
dc.identifier.citedreferenceM. L. Kessler, D. L. McShan, M. Epelman, K. A. Vineberg, A. Eisbruch, T. S. Lawrence, and B. A. Fraass, “ Costlets: A generalized approach to cost functions for automated optimization,” Optimization and Engineering (to be published).
dc.identifier.citedreferenceJ. H. Kim, N. Dogan, D. L. McShan, and M. L. Kessler, “ An AVS‐based system for optimization of conformal radiotherapy treatment plans,” Proceedings of the 1995 International Advanced Visual Systems User and Developer Conference, Boston MA, 1995, pp. 417 – 423.
dc.identifier.citedreferenceT. R. Mackie, J. W. Scrimger, and J. J. Battista, “ A convolution method of calculating dose for 15‐MV x rays,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.595774 12, 188 – 196 ( 1985 ).
dc.identifier.citedreferenceT. Bortfeld, D. L. Kahler, T. J. Waldron, and A L Boyer, “ X‐ray field compensation with multileaf collimators,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 28, 723 – 730 ( 1994 ).
dc.identifier.citedreferenceM. L.P. Dirkx, B. J.M. Heijmen, and J. P.C van Santvoort, “ Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/43/5/009 43, 1171 – 1184 ( 1998 ).
dc.identifier.citedreferenceS. Spirou and C. S. Chui, “ Generation of arbitrary intensity profiles by dynamic jaws or multileaf collimators,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.597345 21, 1031 – 1042 ( 1994 ).
dc.identifier.citedreferenceJ. Stein, T. Bortfeld, B. Dorschel, and W. Schlegel, “ Dynamic x‐ray compensation for conformal radiotherapy by means of multileaf collimation,” Radiother. Oncol. RAONDT --> 0167‐8140 32, 163 – 173 ( 1994 ).
dc.identifier.citedreferenceR. Svensson, P. Kallman, and A. Brahme, “ Analytical solution for the dynamic control of multileaf collimators,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/39/1/003 39, 37 – 61 ( 1994 ).
dc.identifier.citedreferenceJ. P.C. van Santvoort and B. J.M. Heijmen, “ Dynamic leaf collimation without tongue and groove effects,”’ Phys. Med. Biol. PHMBA7 --> 0031‐9155 10.1088/0031‐9155/41/10/017 41, 2091 – 2105 ( 1996 ).
dc.identifier.citedreferenceA. Pirzkall, M. Carol, B. Pickett, P. Xia, M. Roach III, and L. Verhey, “ The effect of beam energy and number of fields on photon‐based IMRT for deep‐seated targets,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(02)02750‐5 53, 434 – 442 ( 2002 ).
dc.identifier.citedreferenceJ. M. Michalski, J. A. Purdy, K. Winter, M. Roach III, S. Vijayakumar, H. M. Sandler, A. M. Markoe, M. A. Ritter, K. J. Russell, S. Sailer, W. B. Harms, C. A. Perez, R. B. Wilder, G. E. Hanks, and J. D. Cox, “ Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(99)00443‐5 46, 391 – 402 ( 2000 ).
dc.identifier.citedreferenceD. Litzenberg, L. A. Dawson, H. Sandler, M. G. Sanda, D. L. McShan, R. K.Ten Haken, K. L. Lam, K. K. Brock, and J. M. Balter, “ Daily prostate targeting using implanted radiopaque markers ” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(01)02654‐2 52, 699 – 703 ( 2002 ).
dc.identifier.citedreferenceT. LoSasso, C. S. Chui, and C. C. Ling, “ Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.598381 25, 1919 – 1927 ( 1998 ).
dc.identifier.citedreferenceX. Sun, P. Xia, and N. Yu, “ Effects of the intensity levels and beam map resolutions on static IMRT plans,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1783551 31, 2402 – 2411 ( 2004 ).
dc.identifier.citedreferenceE. Nioutsikou, J. Bedford, J. Christian, M. Brada, and S. Webb, “ Segmentation of IMRT plans for radical lung radiotherapy delivery with the step‐and‐shoot technique,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1668372 31, 892 – 901 ( 2004 ).
dc.identifier.citedreferenceC. Hurkmans, B. Cho, E. Damen, L. Zijp, and B. Minjnheer, “ Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation,” Radiother. Oncol. RAONDT --> 0167‐8140 10.1016/S0167‐8140(01)00473‐X 62, 163 – 171 ( 2002 ).
dc.identifier.citedreferenceN. Dogan, S. King, B. Emami, N. Mohideen, N. Mirkovic, B. Leybovich, and A. Sethi, “ Assessment of different IMRT boost delivery methods on target coverage and normal tissue sparing,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 57, 1480 – 1491 ( 2003 ).
dc.identifier.citedreferenceA. Pirzkall, M. Carol, F. Lohr, A. Höss, M. Wannenmacher, and J. Debus, “ Comparison of intensity‐modulated radiotherapy with conventional conformal radiotherapy for complex‐shaped tumors,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 10.1016/S0360‐3016(00)00772‐0 48, 1371 – 1380 ( 2000 ).
dc.identifier.citedreferenceV. Wu, D. Kwong, and J. Sham, “ Target dose conformity in 3‐dimensional conformal radiotherapy and intensity modulated radiotherapy,” Radiother. Oncol. RAONDT --> 0167‐8140 10.1016/j.radonc.2004.03.004 71, 201 – 206 ( 2004 ).
dc.identifier.citedreferenceC.‐Y. Hsiung, E. Yorke, C.‐S. Chui, M. Hung, C. Ling, E.‐Y. Huang, C.‐J. Wang, H.‐C. Chen, S.‐A. Yeh, H.‐C. Hsu, and H. Amols, “ Intensity‐modulated radiotherapy versus conventional three‐dimensional conformal radiotherapy for boost or salvage treatment of nasopharyngeal carcinoma,”. Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 53, 638 – 647 ( 2002 ).
dc.identifier.citedreferenceM. Kam, R. Chau, J. Suen, P. Choi, and P. Teo, “ Intensity‐modulated radiotherapy in nasopharyngeal carcinoma: Dosimetric advantage over conventional plans and feasibility of dose escalation,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 56, 145 – 157 ( 2003 ).
dc.identifier.citedreferenceH. Murshed, H. Liu, Z. Liao, J. Barker, X. Wang, S. Tucker, A. Chandra, T. Guerrero, C. Stevens, J. Change, M. Jeter, J. Cox, R. Komaki, and R. Mohan, “ Dose and volume reduction for normal lung using intensity‐modulated radiotherapy for advanced‐stage non‐small‐cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 58, 1258 – 1267 ( 2004 ).
dc.identifier.citedreferenceG. Luxton, S. Hancock, and A. Boyer, “ Dosimetry and radiobiologic model comparison of IMRT and 3D conformal radiotherapy in the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 59, 267 – 284 ( 2004 ).
dc.identifier.citedreferenceD. Huang, P. Xia, P. Akazawa, C. Akazawa, J. Quivey, L. Verhey, M. Kaplan, and N. Lee, “ Comparison of treatment plans using intensity‐modulated radiotherapy and three‐dimensional conformal radiotherapy for paranasal sinus carcinoma,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 56, 158 – 168 ( 2003 ).
dc.identifier.citedreferenceR. Mohan, M. Arnfield, S. Tong, W. Wu, and J. Siebers, “ The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.599000 27, 1226 – 1237 ( 2000 ).
dc.identifier.citedreferenceJ. Markman, D. Low, A. Beavis, and J. Deasy, “ Beyond bixels: Generalizing the optimization parameters for intensity modulated radiation therapy,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1508799 29, 2298 – 2304 ( 2002 ).
dc.identifier.citedreferenceJ. Siebers, M. Lauterbach, P. Keall, and R. Mohan, “ Incorporating multi‐leaf collimator leaf sequencing into iterative IMRT optimization,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1477230 29, 952 – 959 ( 2002 ).
dc.identifier.citedreferenceS. Spirou, N. Fournier‐Bidoz, J. Yang, C. Chui, and C. Ling, “ Smoothing intensity‐modulated beam profiles to improve the efficiency of delivery,” Med. Phys. MPHYA6 --> 0094‐2405 10.1118/1.1406522 28, 2105 – 2112 ( 2001 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.