Show simple item record

A Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling

dc.contributor.authorBruno, Paul A.
dc.contributor.authorMorriss‐andrews, Alex
dc.contributor.authorHenderson, Andrew R.
dc.contributor.authorBrooks, Charles L.
dc.contributor.authorMapp, Anna K.
dc.date.accessioned2017-01-06T20:50:43Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11-21
dc.identifier.citationBruno, Paul A.; Morriss‐andrews, Alex ; Henderson, Andrew R.; Brooks, Charles L.; Mapp, Anna K. (2016). "A Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling." Angewandte Chemie 128(48): 15221-15225.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/135091
dc.description.abstractAberrant canonical NFâ κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many nonâ canonical NFâ κB functions. Here we show that a selective peptideâ based inhibitor of canonical NFâ κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a nonâ labile bond, shows an about 10â fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NFâ κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many proteinâ protein interactions mediated by such structures.Ein Peptidâ basierter Inhibitor für die kanonische NFâ κBâ Signalisierung, in dem eine Wasserstoffbrücke im NBDâ Peptid synthetisch durch eine nichtlabile Bindung ersetzt wurde, wirkt 10â mal stärker als der Originalinhibitor. Der Erfolg des Peptidschleifenaustauschs legt nahe, dass die Strategie nützlich sein könnte, um Modulatoren für viele durch solche Strukturen vermittelte Proteinâ Proteinâ Wechselwirkungen zu finden.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherInhibitoren
dc.subject.otherPeptidschleifen
dc.subject.otherPeptidmimetika
dc.subject.otherProtein-Protein-Wechselwirkungen
dc.subject.otherMedizinische Chemie
dc.titleA Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135091/1/ange201607990-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135091/2/ange201607990.pdf
dc.identifier.doi10.1002/ange.201607990
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceF. Wang, Y. Shi, S. Yadav, H. Wang, Toxicology 2010, 273, 8 â 12.
dc.identifier.citedreferenceL. D. Walensky, K. Pitter, J. Morash, K. J. Oh, S. Barbuto, J. Fisher, E. Smith, G. L. Verdine, S. J. Korsmeyer, Mol. Cell 2006, 24, 199 â 210.
dc.identifier.citedreferenceP.-N. Cheng, C. Liu, M. Zhao, D. Eisenberg, J. S. Nowick, Nat. Chem. 2012, 4, 927 â 933.
dc.identifier.citedreferenceR. N. Chapman, P. S. Arora, Org. Lett. 2006, 8, 5825 â 5828.
dc.identifier.citedreferenceR. N. Chapman, G. Dimartino, P. S. Arora, J. Am. Chem. Soc. 2004, 126, 12252 â 12253.
dc.identifier.citedreferenceP. S. Kutchukian, J. S. Yang, G. L. Verdine, E. I. Shakhnovich, J. Am. Chem. Soc. 2009, 131, 4622 â 4627.
dc.identifier.citedreferenceC. E. Schafmeister, J. Po, G. L. Verdine, J. Am. Chem. Soc. 2000, 122, 5891 â 5892.
dc.identifier.citedreferenceK. Khaja, P. Robbins, Pharmaceuticals 2010, 3, 110 â 124.
dc.identifier.citedreferenceN. J. Greenfield, Nat. Protoc. 2006, 1, 2876 â 2890.
dc.identifier.citedreferenceThe construct NBD1, which contains the unmetathesized allylglycine residues, also exhibited dose-dependent inhibition of NF-κB driven luciferase activity. However, the NBD1 construct also exhibited dose-dependent inhibition of the constitutively expressed β-gal reporter signal consistent with off-target activities and thus, was excluded from further study.
dc.identifier.citedreferenceJ. H. Kwon, S. Keates, S. Simeonidis, F. Grall, T. A. Libermann, A. C. Keates, J. Biol. Chem. 2003, 278, 875 â 884.
dc.identifier.citedreferenceT. Nakayama, R. Fujisawa, H. Yamada, T. Horikawa, H. Kawasaki, K. Hieshima, D. Izawa, S. Fujiie, T. Tezuka, O. Yoshie, Int. Immunol. 2001, 13, 95 â 103.
dc.identifier.citedreferenceC. Kunsch, C. A. Rosen, Mol. Cell. Biol. 1993, 13, 6137 â 6146.
dc.identifier.citedreferenceS. Lee, Y. J. Kim, S. Kwon, Y. Lee, S. Y. Choi, J. Park, BMB Rep. 2009, 42, 265 â 270.
dc.identifier.citedreferenceN. D. Perkins, Nat. Rev. Mol. Cell Biol. 2007, 8, 49 â 62.
dc.identifier.citedreferenceC. Albanese, K. Wu, M. D’Amico, C. Jarrett, D. Joyce, J. Hughes, J. Hulit, T. Sakamaki, M. Fu, A. Ben-Ze’ev, etâ al., Mol. Biol. Cell 2003, 14, 585 â 599.
dc.identifier.citedreferenceS. D. Westerheide, M. W. Mayo, V. Anest, J. L. Hanson, A. S. Baldwin, Mol. Cell. Biol. 2001, 21, 8428 â 8436.
dc.identifier.citedreferenceK.-J. Park, V. Krishnan, B. W. O’Malley, Y. Yamamoto, R. B. Gaynor, Mol. Cell 2005, 18, 71 â 82.
dc.identifier.citedreferenceJ. Zhang, M. A. Warren, S. F. Shoemaker, M. M. Ip, Endocrinology 2007, 148, 268 â 278.
dc.identifier.citedreferenceFor previous work replacing nonpolar interactions with hydrocarbon tethers see referencesâ [40â 42].
dc.identifier.citedreferenceA. Glas, D. Bier, G. Hahne, C. Rademacher, C. Ottmann, T. N. Grossmann, Angew. Chem. Int. Ed. 2014, 53, 2489 â 2493; Angew. Chem. 2014, 126, 2522 â 2526.
dc.identifier.citedreferenceY. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, A. J. A. Ellman, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 11684 â 11689.
dc.identifier.citedreferenceJ. F. Reichwein, C. Versluis, R. M. Liskamp, J. Org. Chem. 2000, 65, 6187 â 6195.
dc.identifier.citedreferenceS. M. Miles, R. J. Leatherbarrow, S. P. Marsden, W. J. Coates, Org. Biomol. Chem. 2004, 2, 281 â 283.
dc.identifier.citedreferenceJ. Gavenonis, B. A. Sheneman, T. R. Siegert, M. R. Eshelman, J. A. Kritzer, Nat. Chem. Biol. 2014, 10, 716 â 722.
dc.identifier.citedreferenceM. Guharoy, P. Chakrabarti, Bioinformatics 2007, 23, 1909 â 1918.
dc.identifier.citedreferenceA. L. Garner, K. D. Janda, Curr. Top. Med. Chem. 2011, 11, 258 â 280.
dc.identifier.citedreferenceB. Hoesel, J. A. Schmid, Mol. Cancer 2013, 12, 86.
dc.identifier.citedreferenceJ. Albert, S. Baldwin, J. Clin. Invest. 2001, 107, 3 â 6.
dc.identifier.citedreferenceB. O. Villoutreix, M. A. Kuenemann, J.-L. Poyet, H. Bruzzoni-Giovanelli, C. Labbé, D. Lagorce, O. Sperandio, M. A. Miteva, Mol. Inf. 2014, 33, 414 â 437.
dc.identifier.citedreferenceL. N. Makley, J. E. Gestwicki, Chem. Biol. Drug Des. 2013, 81, 22 â 32.
dc.identifier.citedreferenceG. L. Verdine, L. D. Walensky, Clin. Cancer Res. 2007, 13, 7264 â 7270.
dc.identifier.citedreferenceM. S. Golden, S. M. Cote, M. Sayeg, B. S. Zerbe, E. A. Villar, D. Beglov, S. L. Sazinsky, R. M. Georgiadis, S. Vajda, D. Kozakov, etâ al., J. Am. Chem. Soc. 2013, 135, 6242 â 6256.
dc.identifier.citedreferenceM. Rushe, L. Silvian, S. Bixler, L. L. Chen, A. Cheung, S. Bowes, H. Cuervo, S. Berkowitz, T. Zheng, K. Guckian, etâ al., Structure 2008, 16, 798 â 808.
dc.identifier.citedreferenceA. V. Gasparian, Y. J. Yao, D. Kowalczyk, L. A. Lyakh, A. Karseladze, T. J. Slaga, I. V. Budunova, J. Cell Sci. 2002, 115, 141 â 151.
dc.identifier.citedreferenceE. Zandi, D. M. Rothwarf, M. Delhase, M. Hayakawa, Cell 1997, 91, 243 â 252.
dc.identifier.citedreferenceC. Makris, V. L. Godfrey, G. Krähn-Senftleben, T. Takahashi, J. L. Roberts, T. Schwarz, L. Feng, R. S. Johnson, M. Karin, Mol. Cell 2000, 5, 969 â 979.
dc.identifier.citedreferenceA. Oeckinghaus, M. S. Hayden, S. Ghosh, Nat. Immunol. 2011, 12, 695 â 708.
dc.identifier.citedreferenceM. J. May, F. D’Acquisto, L. A. Madge, J. Glöckner, J. S. Pober, S. Ghosh, Science 2000, 289, 1550 â 1554.
dc.identifier.citedreferenceM. J. May, R. B. Marienfeld, S. Ghosh, J. Biol. Chem. 2002, 277, 45992 â 46000.
dc.identifier.citedreferenceI. Strickland, S. Ghosh, Ann. Rheum. Dis. 2006, 65 Suppl 3, iii 75 â 82.
dc.identifier.citedreferenceD. A. Delfín, Y. Xu, J. M. Peterson, D. C. Guttridge, J. A. Rafael-Fortney, P. M. Janssen, J. Transl. Med. 2011, 9, 68.
dc.identifier.citedreferenceK. K. Rehman, S. Bertera, R. Bottino, A. N. Balamurugan, J. C. Mai, Z. Mi, M. Trucco, P. D. Robbins, J. Biol. Chem. 2003, 278, 9862 â 9868.
dc.identifier.citedreferenceInspired by success reported by others in the stabilization of canonical secondary structures such as α-helices and β-strands, referencesâ [19â 25].
dc.identifier.citedreferenceL. K. Henchey, S. Kushal, R. Dubey, R. N. Chapman, B. Z. Olenyuk, P. S. Arora, J. Am. Chem. Soc. 2010, 132, 941 â 943.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.