Show simple item record

The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects

dc.contributor.authorLyons, L. R.
dc.contributor.authorGallardo‐lacourt, B.
dc.contributor.authorZou, S.
dc.contributor.authorWeygand, J. M.
dc.contributor.authorNishimura, Y.
dc.contributor.authorLi, W.
dc.contributor.authorGkioulidou, M.
dc.contributor.authorAngelopoulos, V.
dc.contributor.authorDonovan, E. F.
dc.contributor.authorRuohoniemi, J. M.
dc.contributor.authorAnderson, B. J.
dc.contributor.authorShepherd, S. G.
dc.contributor.authorNishitani, N.
dc.date.accessioned2017-01-10T19:06:15Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-11
dc.identifier.citationLyons, L. R.; Gallardo‐lacourt, B. ; Zou, S.; Weygand, J. M.; Nishimura, Y.; Li, W.; Gkioulidou, M.; Angelopoulos, V.; Donovan, E. F.; Ruohoniemi, J. M.; Anderson, B. J.; Shepherd, S. G.; Nishitani, N. (2016). "The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects." Journal of Geophysical Research: Space Physics 121(11): 10,880-10,897.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/135355
dc.description.abstractThe main phase of the 17 March 2013 storm had excellent coverage from groundâ based instruments and from lowâ and highâ altitude spacecraft, allowing for evaluation of the relations between major storm time phenomena that are often considered separately. The shock impact with its concurrent southward interplanetary magnetic field (IMF) immediately drove dramatic poleward expansion of the poleward boundary of the auroral oval (implying strong nightside reconnection), strong auroral activity, and strong penetrating midlatitude convection and ionospheric currents. This was followed by periods of southward IMF driving of electric fields that were at first relatively smooth as often employed in storm modeling but then became extremely bursty and structured associated with equatorward extending auroral streamers. The auroral oval did not expand much further poleward during these two latter periods, suggesting a lower overall nightside reconnection rate than that during the first period and approximate balance with dayside reconnection. Characteristics of these three modes of driving were reflected in horizontal and fieldâ aligned currents. Equatorward expansion of the auroral oval occurred predominantly during the structured convection mode, when electric fields became extremely bursty. The period of this third mode also approximately corresponded to the time of largest equatorward motion of the ionospheric trough, of apparent transport of high total electron content (TEC) features into the auroral oval from the polar cap, and of largest earthward injection of ions and electrons into the ring current. The enhanced responses of the aurora, currents, TEC, and the ring current indicate a common driving of all these storm time features during the bursty convection mode period.Key PointsStorm had excellent ground/space data coverage, allowing evaluation of relations between major storm phenomena often considered separatelyIdentified three southward IMF electric fields driving modes that were reflected in the aurora and ionospheric and fieldâ aligned currentsThe third mode was extremely bursty, giving common driving of auroral and current structures, TEC changes, and ring current injection
dc.publisherWiley Periodicals, Inc.
dc.publisherOxford Science Publ
dc.subject.otherring current particles
dc.subject.otherfieldâ aligned currents
dc.subject.otherionospheric currents
dc.subject.otherauroral
dc.subject.othermagnetic storms
dc.subject.othertotal electron content
dc.titleThe 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135355/1/jgra53033_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135355/2/jgra53033.pdf
dc.identifier.doi10.1002/2016JA023237
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy ( 2013 ), Science objectives and rationale for the Radiation Belt Storm Probes mission, Space Sci. Rev., 179 ( 1â 4 ), 3 â 27, doi: 10.1007/s11214-012-9908-y.
dc.identifier.citedreferenceBlake, J. B., et al. ( 2013 ), The Magnetic Electron Ion Spectrometer, Space Sci. Rev., 179 ( 1â 4 ), 383 â 421, doi: 10.1007/s11214-013-9991-8.
dc.identifier.citedreferenceBoudouridis, A., E. Zesta, R. Lyons, P. C. Anderson, and D. Lummerzheim ( 2003 ), Effect of solar wind pressure pulses on the size and strength of the auroral oval, J. Geophys. Res., 108 ( A4 ), 8012, doi: 10.1029/2002JA009373. [Available at http://www.agu.org/pubs/crossref/2003/2002JA009373.shtml, accessed 2010â 08â 15.]
dc.identifier.citedreferenceBoudouridis, A., E. Zesta, L. Lyons, P. Anderson, and D. Lummerzheim ( 2004 ), Magnetospheric reconnection driven by solar wind pressure fronts, Ann. Geophys., 22 ( 4 ), 1367 â 1378, doi: 10.5194/angeo-22-1367-2004.
dc.identifier.citedreferenceBoudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim ( 2005 ), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi: 10.1029/2004JA010704.
dc.identifier.citedreferenceCrowley, G. ( 1996 ), Critical review of ionospheric patches and blobs, in Review of Radio Science 1993â 1996, edited by W. R. Stone, chap. 27, pp. 619 â 648, Oxford Science Publ., U. K.
dc.identifier.citedreferencede la Beaujardière, O., L. R. Lyons, J. M. Ruohoniemi, E. Friisâ Christensen, C. Danielsen, F. J. Rich, and P. T. Newell ( 1994 ), Quietâ time intensifications along the poleward auroral boundary near midnight, J. Geophys. Res., 99 ( A1 ), 287 â 298, doi: 10.1029/93JA01947.
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ), The SuperMAG data processing technique, J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.
dc.identifier.citedreferenceGkioulidou, M., A. Ukhorskiy, D. G. Mitchell, T. Sotirelis, B. Mauk, and L. J. Lanzerotti ( 2014 ), The role of smallâ scale ion injections in the buildup of Earth’s ring current pressure: Van Allen Probes observations of the March 17th, 2013 storm, J. Geophys. Res. Space Physics, 119, 7327 â 7342, doi: 10.1002/2014JA020096.
dc.identifier.citedreferenceHori, T., A. Shinbori, N. Nishitani, T. Kikuchi, S. Fujita, T. Nagatsuma, O. Troshichev, K. Yumoto, A. Moiseyev, and K. Seki ( 2012 ), Evolution of negative SIâ induced ionospheric flows observed by SuperDARN King Salmon HF radar, J. Geophys. Res., 117, A12223, doi: 10.1029/2012JA018093.
dc.identifier.citedreferenceHudson, M. K., J. Paral, B. T. Kress, M. Wiltberger, D. N. Baker, J. C. Foster, D. L. Turner, and J. R. Wygant ( 2015 ), Modeling CMEâ shockâ driven storms in 2012â 2013: MHD test particle simulations, J. Geophys. Res. Space Physics, 120, 1168 â 1181, doi: 10.1002/2014JA020833.
dc.identifier.citedreferenceKauristie, K., V. A. Sergeev, O. Amm, M. V. Kubyshkina, J. Jussila, E. Donovan, and K. Liou ( 2003 ), Bursty bulk flow intrusion to the inner plasma sheet as inferred from auroral observations, J. Geophys. Res., 108 ( A1 ), 1040, doi: 10.1029/2002JA009371.
dc.identifier.citedreferenceKikuchi, T., S. Tsunomura, K. Hashimoto, and K. Nozaki ( 2001 ), Fieldâ aligned current effects on midlatitude geomagnetic sudden commencements, J. Geophys. Res., 106 ( A8 ), 15,555 â 15,565, doi: 10.1029/2001JA900030.
dc.identifier.citedreferenceKletzing, C. A., et al. ( 2013 ), The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, Space Sci. Rev., 179 ( 1â 4 ), 127 â 181, doi: 10.1007/s11214-013-9993-6.
dc.identifier.citedreferenceKurth, W. S., S. De Pascuale, J. B. Faden, C. A. Kletzing, G. B. Hospodarsky, S. Thaller, and J. R. Wygant ( 2015 ), Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes, J. Geophys. Res. Space Physics, 120, 904 â 914, doi: 10.1002/2014JA020857.
dc.identifier.citedreferenceLi, W., et al. ( 2014 ), Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm, J. Geophys. Res. Space Physics, 119, 4681 â 4693, doi: 10.1002/2014JA019945.
dc.identifier.citedreferenceLi, Z., M. Hudson, B. Kress, and J. Paral ( 2015 ), Threeâ dimensional test particle simulation of the 17â 18 March 2013 CME shockâ driven storm, Geophys. Res. Lett., 42, 5679 â 5685, doi: 10.1002/2015GL064627.
dc.identifier.citedreferenceLyons, L. R., Y. Nishimura, H.â J. Kim, E. Donovan, V. Angelopoulos, G. Sofko, M. Nicolls, C. Heinselman, J. M. Ruohoniemi, and N. Nishitani ( 2011 ), Possible connection of polar cap flows to preâ and postâ substorm onset PBIs and streamers, J. Geophys. Res., 116, A12225, doi: 10.1029/2011JA016850.
dc.identifier.citedreferenceLyons, L. R., et al. ( 2015 ), Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts, J. Geophys. Res. Space Physics, 120, 5009 â 5021, doi: 10.1002/2015JA021023.
dc.identifier.citedreferenceMende, S. B., S. E. Harris, H. U. Frey, V. Angelopoulos, C. T. Russell, E. Donovan, B. Jackel, M. Greffen, and L. M. Peticolas ( 2008 ), The THEMIS array of groundâ based observatories for the study of auroral substorms, Space Sci. Rev., 141 ( 1â 4 ), 357 â 387, doi: 10.1007/s11214-008-9380-x.
dc.identifier.citedreferenceNishimura, Y. et al. ( 2010 ), Preonset time sequence of auroral substorms: Coordinated observations by allâ sky imagers, satellites, and radars, J. Geophys. Res., 115, A00I08, doi: 10.1029/2010JA015832. [Available at http://www.agu.org/pubs/crossref/2010/2010JA015832.shtml, accessed 2011â 03â 26.]
dc.identifier.citedreferencePitkänen, T., A. T. Aikio, and L. Juusola ( 2013 ), Observations of polar cap flow channel and plasma sheet flow bursts during substorm expansion, J. Geophys. Res. Space Physics, 118, 774 â 784, doi: 10.1002/jgra.50119.
dc.identifier.citedreferenceRideout, W., and A. Coster ( 2006 ), Automated GPS processing for global total electron content data, GPS Solut., 10 ( 3 ), 219 â 228, doi: 10.1007/s10291-006-0029-5.
dc.identifier.citedreferenceShi, Y., E. Zesta, L. R. Lyons, J. Yang, A. Boudouridis, Y. S. Ge, J. M. Ruohoniemi, and S. Mende ( 2012 ), Twoâ dimensional ionospheric flow pattern associated with auroral streamers, J. Geophys. Res., 117, A02208, doi: 10.1029/2011JA017110. [Available at http://www.agu.org/pubs/crossref/2012/2011JA017110.shtml, (Accessed 27 March 2012).]
dc.identifier.citedreferenceTakahashi, N., Y. Kasaba, A. Shinbori, Y. Nishimura, T. Kikuchi, Y. Ebihara, and T. Nagatsuma ( 2015 ), Response of ionospheric electric fields at midâ low latitudes during sudden commencements, J. Geophys. Res. Space Physics, 120, 4849 â 4862, doi: 10.1002/2015JA021309.
dc.identifier.citedreferenceWaters, C. L., B. J. Anderson, and K. Liou ( 2001 ), Estimation of global field aligned currents using the Iridium® system magnetometer data, Geophys. Res. Lett., 28 ( 11 ), 2165 â 2168, doi: 10.1029/2000GL012725.
dc.identifier.citedreferenceWeygand, J. M., O. Amm, A. Viljanen, V. Angelopoulos, D. Murr, M. J. Engebretson, H. Gleisner, and I. Mann ( 2011 ), Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, doi: 10.1029/2010JA016177.
dc.identifier.citedreferenceYu, Y., V. Jordanova, D. Welling, B. Larsen, S. G. Claudepierre, and C. Kletzing ( 2014 ), The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm, Geophys. Res. Lett., 41, 1126 â 1132, doi: 10.1002/2014GL059322.
dc.identifier.citedreferenceZesta, E., H. J. Singer, D. Lummerzheim, C. T. Russell, L. R. Lyons, and M. J. Brittnacher ( 2000 ), The effect of the January 10, 1997, pressure pulse on the magnetosphereâ ionosphere current system, in Magnetospheric Current Systems, edited by S.â I. Ohtani, et al., pp. 217 â 226, AGU, Washington D. C. [Available at http://onlinelibrary.wiley.com/doi/10.1029/GM118p0217/summary, accessed 2016â 04â 12.]
dc.identifier.citedreferenceZhang, Q.â H., et al. ( 2013 ), Direct observations of the evolution of polar cap ionization patches, Science, 339 ( 6127 ), 1597 â 1600, doi: 10.1126/science.1231487.
dc.identifier.citedreferenceZou, S., L. R. Lyons, M. J. Nicolls, and C. J. Heinselman ( 2009 ), PFISR observations of strong azimuthal flow bursts in the ionosphere and their relation to nightside aurora, J. Atmos. Sol. Terr. Phys., 71 ( 6â 7 ), 729 â 737, doi: 10.1016/j.jastp.2008.06.015.
dc.identifier.citedreferenceZou, S., M. B. Moldwin, A. Coster, L. R. Lyons, and M. J. Nicolls ( 2011 ), GPS TEC observations of dynamics of the midâ latitude trough during substorms, Geophys. Res. Lett., 38, L14109, doi: 10.1029/2011GL048178. [Available at http://europa.agu.org/?view=article&uri=/journals/gl/gl1114/2011GL048178/2011GL048178.xml&t=gl,2011,zou, accessed 2011â 08â 17.]
dc.identifier.citedreferenceZou, Y., Y. Nishimura, L. R. Lyons, E. F. Donovan, J. M. Ruohoniemi, N. Nishitani, and K. A. McWilliams ( 2014 ), Statistical relationships between enhanced polar cap flows and PBIs, J. Geophys. Res. Space Physics, 119, 151 â 162, doi: 10.1002/2013JA019269.
dc.identifier.citedreferenceAmm, O., and A. Viljanen ( 1997 ), Ionospheric elementary current systems in spherical coordinates and their application, J. Geomagn. Geoelectr., 49 ( 7 ), 947 â 955, doi: 10.5636/jgg.49.947.
dc.identifier.citedreferenceAnderson, B. J., H. Korth, C. L. Waters, D. L. Green, V. G. Merkin, R. J. Barnes, and L. P. Dyrud ( 2014 ), Development of largeâ scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, Geophys. Res. Lett., 41, 3017 â 3025, doi: 10.1002/2014GL059941.
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS mission, Space Sci. Rev., 141 ( 1â 4 ), 5 â 34, doi: 10.1007/s11214-008-9336-1.
dc.identifier.citedreferenceAntonova, E. E. ( 2006 ), Stability of the magnetospheric plasma pressure distribution and magnetospheric storms, Adv. Space Res., 38 ( 8 ), 1626 â 1630, doi: 10.1016/j.asr.2005.05.005.
dc.identifier.citedreferenceAntonova, E. E., and M. V. Stepanova ( 2015 ), The problem of the acceleration of electrons of the outer radiation belt and magnetospheric substorms, Earth Planets Space, 67 ( 1 ), 1 â 8, doi: 10.1186/s40623-015-0319-7.
dc.identifier.citedreferenceBaker, D. N., et al. ( 2014 ), Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations, Geophys. Res. Lett., 41, 1351 â 1358, doi: 10.1002/2013GL058942.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.