Show simple item record

Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake

dc.contributor.authorBai, Ling
dc.contributor.authorLiu, Hongbing
dc.contributor.authorRitsema, Jeroen
dc.contributor.authorMori, James
dc.contributor.authorZhang, Tianzhong
dc.contributor.authorIshikawa, Yuzo
dc.contributor.authorLi, Guohui
dc.date.accessioned2017-01-10T19:10:41Z
dc.date.available2017-03-01T14:41:59Zen
dc.date.issued2016-01-28
dc.identifier.citationBai, Ling; Liu, Hongbing; Ritsema, Jeroen; Mori, James; Zhang, Tianzhong; Ishikawa, Yuzo; Li, Guohui (2016). "Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake." Geophysical Research Letters 43(2): 637-642.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/135634
dc.description.abstractThe 25 April 2015, Mw7.8 Gorkha, Nepal, earthquake ruptured a shallow section of the Indian‐Eurasian plate boundary by reverse faulting with NNE‐SSW compression, consistent with the direction of current Indian‐Eurasian continental collision. The Gorkha main shock and aftershocks were recorded by permanent global and regional arrays and by a temporary local broadband array near the China‐Nepal border deployed prior to the Gorkha main shock. We relocate 272 earthquakes with Mw>3.5 by applying a multiscale double‐difference earthquake relocation technique to arrival times of direct and depth phases recorded globally and locally. We determine a well‐constrained depth of 18.5 km for the main shock hypocenter which places it on the Main Himalayan Thrust (MHT). Many of the aftershocks at shallower depths illuminate faulting structure in the hanging wall with dip angles that are steeper than the MHT. This system of thrust faults of the Lesser Himalaya may accommodate most of the elastic strain of the Himalayan orogeny.Key PointsWe relocate the 2015 Gorkha earthquakes using teleseismic and regional waveformsThe main shock is located on the horizontal Main Himalaya Thrust (MHT) at a depth of 18.5 kmAftershocks show faulting structure in the hanging wall above the MHT
dc.publisherWiley Periodicals, Inc.
dc.subject.otherGorkha earthquake
dc.subject.otherearthquake relocation
dc.subject.otherMain Himalayan Thrust
dc.subject.othercontinental collision zone
dc.subject.otherhanging wall structure
dc.titleFaulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135634/1/grl53895.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135634/2/grl53895_am.pdf
dc.identifier.doi10.1002/2015GL066473
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceSapkota, S. N., L. Bollinger, Y. Klinger, P. Tapponnier, Y. Gaudemer, and D. Tiwari ( 2012 ), Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255, Nat. Geosci., 6, 71 – 76, doi: 10.1038/NGEO1669.
dc.identifier.citedreferenceCaldwell, W. B., S. L. Klemperer, J. F. Lawrence, S. S. Rai, and Ashish ( 2013 ), Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking, Earth Planet. Sci. Lett., 367, 15 – 27.
dc.identifier.citedreferenceFan, W., and P. M. Shearer ( 2015 ), Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves, Geophys. Res. Lett., 42, 5744 – 5752, doi: 10.1002/2015GL064587.
dc.identifier.citedreferenceGaletzka, J., et al. ( 2015 ), Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal, Science, 349, 1091 – 1095.
dc.identifier.citedreferenceHand, E., and P. Pulla ( 2015 ), Nepal disaster predages a coming megaquake, Science, 348, 484 – 485.
dc.identifier.citedreferenceHetényi, G., R. Cattin, F. Brunet, L. Bollinger, J. Vergne, J. L. Nábělek, and M. Diament ( 2007 ), Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower‐crustal eclogitization, Earth Planet. Sci. Lett., 264 ( 1 ), 226 – 244.
dc.identifier.citedreferenceKikuchi, M., and H. Kanamori ( 1991 ), Inversion of complex body waves‐III, Bull. Seismol. Soc. Am., 81 ( 6 ), 2335 – 2350.
dc.identifier.citedreferenceKumar, S., S. G. Wesnousky, R. Jayangondaperumal, T. Nakata, Y. Kumahara, and V. Singh ( 2010 ), Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes, J. Geophy. Res., 115, B12422, doi: 10.1029/2009JB006789.
dc.identifier.citedreferenceNakata, T., T. K. Otsuki, and S. H. Khan ( 1990 ), Active faults, stress field, and plate moltion along the Indo‐Eurasian plate boundary, Tectonophysics, 181, 83 – 95.
dc.identifier.citedreferenceNi, J., and M. Barazangi ( 1984 ), Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya, J. Geophy. Res., 89 ( B2 ), 1147 – 1163.
dc.identifier.citedreferencePandey, M. R., R. P. Tandukar, J. P. Avouac, J. Vergne, and T. Héritier ( 1999 ), Seismotectonics of the Nepal Himalaya from a local seismic network, J. Asian Earth Sci., 17 ( 5 ), 703 – 712.
dc.identifier.citedreferenceRai, S. S., K. Priestley, V. K. Gaur, S. Mitra, M. P. Singh, and M. Searle ( 2006 ), Configuration of the Indian Moho beneath the NW Himalaya and Ladakh, Geophy. Res. Lett., 33, L15308, doi: 10.1029/2006GL026076.
dc.identifier.citedreferenceRajendran, C. P., B. John, and K. Rajendran ( 2015 ), Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust, J. Geophys. Res. Solid Earth, 120, 1623 – 1641, doi: 10.1002/2014JB011015.
dc.identifier.citedreferenceSchelling, D., and K. Arita ( 1991 ), Thrust tectonics, crustal shortening, and the structure of the far‐eastern Nepal, Himalaya, Tectonicsics, 10, 851 – 862.
dc.identifier.citedreferenceSchulte‐Pelkum, V., G. Monsalve, A. Sheehan, M. R. Pandey, S. Sapkota, R. Bilham, and F. Wu ( 2005 ), Imaging the Indian subcontinent beneath the Himalaya, Nature, 435, 1222 – 1225, doi: 10.1038/nature03678.
dc.identifier.citedreferenceSchweitzer, J. ( 2001 ), HYPOSAT‐An enhanced routine to locate seismic events, Pure Appl. Geophys., 158, 277 – 289.
dc.identifier.citedreferenceWaldhauser, F. ( 2001 ), hypoDD—A program to compute double‐difference hypocenter locations (hypodd version 1.0‐03/2001), Open File Rep. USGS/OFR‐01‐113, vol. 113, US Geol. Surv., Menlo Park, Calif.
dc.identifier.citedreferenceWaldhauser, F., and W. L. Ellsworth ( 2000 ), A double‐difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90 ( 6 ), 1353 – 1368.
dc.identifier.citedreferenceWaldhauser, F., and D. Schaff ( 2007 ), Regional and teleseismic double‐difference earthquake relocation using waveform cross‐correlation and global bulletin data, J. Geophy. Res., 112, B12301, doi: 10.1029/2007JB004938.
dc.identifier.citedreferenceWang, K., and Y. Fialko ( 2015 ), Slip model of the 2015 M w 7.8 Gorkha (Nepal) earthquake from inversions of ALOS‐2 and GPS data, Geophys. Res. Lett., 42, 7452 – 7458, doi: 10.1002/2015GL065201.
dc.identifier.citedreferenceWang, W., J. Hao, J. He, and Z. Yao ( 2015 ), Rupture process of the M w 7.9 Nepal earthquake April 25, 2015, Sci. China Earth Sci., 58, 1895 – 1900, doi: 10.1007/s11430-015-5170-y.
dc.identifier.citedreferenceXu, Q., J. Zhao, X. Yuan, H. Liu, and S. Pei ( 2015 ), Mapping crustal structure beneath southern Tibet: Seismic evidence for continental crustal underthrusting, Gondwana Res., 27, 1487 – 1493.
dc.identifier.citedreferenceYin, A. ( 2006 ), Cenozoic tectonic evolution of the Himalayan orogen as constrained by along‐strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth Sci. Rev., 76 ( 1 ), 1 – 131.
dc.identifier.citedreferenceZhao, W., K. D. Nelson, and Project INDEPTH Team ( 1993 ), Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature, 366, 557 – 559.
dc.identifier.citedreferenceZheng, X., Z. Yao, J. Liang, and J. Zheng ( 2010 ), The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches, Bull. Seismol. Soc. Am., 100, 2866 – 2872, doi: 10.1785/012009025.
dc.identifier.citedreferenceLindsey, E. O., R. Natsuaki, X. Xu, M. Shimada, M. Hashimoto, D. Melgar, and D. T. Sandwell ( 2015 ), Line of sight displacement from ALOS‐2 interferometry: M w 7.8 Gorkha earthquake and M w 7.3 aftershock, Geophys. Res. Lett., 42, 6655 – 6661, doi: 10.1002/2015GL065385.
dc.identifier.citedreferenceMonsalve, G., A. Sheehan, C. Rowe, and S. Rajaure ( 2008 ), Seismic structure of the crust and the upper mantle beneath the Himalayas: Evidence for eclogitization of lower crustal rocks in the Indian Plate, J. Geophy. Res., 113, B08315, doi: 10.1029/2007JB005424.
dc.identifier.citedreferenceNábělek, J., G. Hetenyi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, B. Huang, and H.‐C. Team ( 2009 ), Underplating in the Himalaya‐Tibet collision zone revealed by the Hi‐CLIMB experiment, Science, 325, 1371 – 1374.
dc.identifier.citedreferenceActon, C. E., K. Priestley, and V. K. Gaur ( 2011 ), Crustal structure of the Darjeeling‐Sikkim Himalaya and southern Tibet, Geophy. J. Int., 184 ( 2 ), 829 – 852, doi: 10.1111/j.1365-246X.2010.04868.x.
dc.identifier.citedreferenceAmatya, K., B. Jnawali, and P. Shrestha ( 1994 ), Geological map of Nepal: Kathmandu, 1994: Scale: 1: 1 000 000, Dep. of Mines and Geol., Kathmandu, Nepal.
dc.identifier.citedreferenceAvouac, J. P., L. Meng, S. Wei, T. Wang, and J. P. Ampuero ( 2015 ), Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nature Geosci., 8, 708 – 711, doi: 10.1038/ngeo2518.
dc.identifier.citedreferenceBai, L., and T. Zhang ( 2015 ), Complex deformation pattern of the Pamir‐Hindu Kush region inferred from multi‐scale double‐difference earthquake relocations, Tectonophysics, 638, 177 – 184, doi: 10.1016/j.tecto.2014.11.006.
dc.identifier.citedreferenceBai, L., Z. Wu, T. Zhang, and I. Kawasaki ( 2006 ), The effect of distribution of stations upon location error: Statistical tests based on the double‐difference earthquake location algorithm and the bootstrap method, Earth Planets Space, 58, e9 – e12.
dc.identifier.citedreferenceBai, L., G. Li, N. G. Khan, J. Zhao, and L. Ding ( 2016 ), Focal depths and mechanisms of shallow earthquakes in the Himalayan‐Tibetan region, Gondwana Res., doi: 10.1016/j.gr.2015.07.009.
dc.identifier.citedreferenceBilham, R. ( 1995 ), Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes, Curr. Sci., 69, 101 – 128.
dc.identifier.citedreferenceBilham, R. ( 2015 ), Raising Kathmandu, Nature Geosci., 8, 582 – 584.
dc.identifier.citedreferenceBilham, R., V. Gaur, and P. Molnar ( 2001 ), Himalayan seismic hazard, Science, 293, 1442 – 1444.
dc.identifier.citedreferenceBollinger, L., S. N. Sapkota, P. Tapponnier, Y. Klinger, M. Rizza, J. Van der Woerd, D. R. Tiwari, R. Pandey, A. Bitri, and S. Bes de Berc ( 2014 ), Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust, J. Geophy. Res. Solid Earth, 119, 7123 – 7163, doi: 10.1002/2014JB010970.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.