Show simple item record

Elasticity in Macrophage‐Synthesized Biocrystals

dc.contributor.authorHorstman, Elizabeth M.
dc.contributor.authorKeswani, Rahul K.
dc.contributor.authorFrey, Benjamin A.
dc.contributor.authorRzeczycki, Phillip M.
dc.contributor.authorLaLone, Vernon
dc.contributor.authorBertke, Jeffery A.
dc.contributor.authorKenis, Paul J. A.
dc.contributor.authorRosania, Gus R.
dc.date.accessioned2017-02-02T22:00:27Z
dc.date.available2018-04-02T18:03:23Zen
dc.date.issued2017-02-06
dc.identifier.citationHorstman, Elizabeth M.; Keswani, Rahul K.; Frey, Benjamin A.; Rzeczycki, Phillip M.; LaLone, Vernon; Bertke, Jeffery A.; Kenis, Paul J. A.; Rosania, Gus R. (2017). "Elasticity in Macrophage‐Synthesized Biocrystals." Angewandte Chemie International Edition 56(7): 1815-1819.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/135964
dc.description.abstractSupramolecular crystalline assembly constitutes a rational approach to bioengineer intracellular structures. Here, biocrystals of clofazimine (CFZ) that form in vivo within macrophages were measured to have marked curvature. Isolated crystals, however, showed reduced curvature suggesting that intracellular forces bend these drug crystals. Consistent with the ability of biocrystals to elastically deform, the inherent crystal structure of the principal molecular component of the biocrystals—the hydrochloride salt of CFZ (CFZ‐HCl)—has a corrugated packing along the (001) face and weak dispersive bonding in multiple directions. These characteristics were previously found to be linked to the elasticity of other organic crystals. Internal stress in bent CFZ‐HCl led to photoelastic effects on the azimuthal orientation of polarized light transmittance. We propose that elastic, intracellular crystals can serve as templates to construct functional microdevices with different applications.Clofazimine hydrochloride (CFZ‐HCl) crystals, the primary component of CFZ‐associated biocrystals that intracellularly crystallize in macrophage cells exhibit elastic behavior. The multi‐directional interactions established via the salt‐associated chloride and corrugated packing in the crystal structure of CFZ‐HCl allow for the crystal’s elasticity.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiocrystals
dc.subject.otherclofazimine
dc.subject.otherelasticity
dc.subject.othercrystal engineering
dc.subject.otherX-ray diffraction
dc.titleElasticity in Macrophage‐Synthesized Biocrystals
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135964/1/anie201611195_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135964/2/anie201611195-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135964/3/anie201611195.pdf
dc.identifier.doi10.1002/anie.201611195
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceA. Curtis, L. Sokolikova-Csaderova, G. Aitchison, Biophys. J. 2007, 92, 2255 – 2261.
dc.identifier.citedreferenceL. Levy, Am. J. Trop. Med. Hyg. 1974, 23, 1097 – 1109.
dc.identifier.citedreferenceP. Belaube, J. Devaux, M. Pizzi, R. Boutboul, Y. Privat, Int. J. Lepr. Other Mycobact. Dis. 1983, 51, 328 – 330.
dc.identifier.citedreferenceD. K. Banerjee, G. A. Ellard, P. T. Gammon, M. F. R. Waters, Am. J. Trop. Med. Hyg. 1974, 23, 1110 – 1115.
dc.identifier.citedreferenceA. C. McDougall, W. R. Horsfall, J. E. Hede, A. J. Chaplin, Br. J. Dermatol. 1980, 102, 227 – 230.
dc.identifier.citedreferenceJ. Baik, K. A. Stringer, G. Mane, G. R. Rosania, Antimicrob. Agents Chemother. 2013, 57, 1218 – 1230.
dc.identifier.citedreferenceJ. Baik, G. R. Rosania, PLoS One 2012, 7, e 47494.
dc.identifier.citedreferenceM. L. Conalty, R. D. Jackson, Br. J. Exp. Pathol. 1962, 43, 650 – 654.
dc.identifier.citedreferenceR. K. Keswani, J. Baik, L. Yeomans, C. Hitzman, A. Johnson, A. Pawate, P. J. A. Kenis, N. Rodríguez-Hornedo, K. A. Stringer, G. R. Rosania, Mol. Pharm. 2015, 12, 2528 – 2536.
dc.identifier.citedreferenceK. A. Min, W. G. Rajeswaran, R. Oldenbourg, G. Harris, R. K. Keswani, M. Chiang, P. Rzeczycki, A. Talattof, M. Hafeezma, R. Horobin, et al., Adv. Sci. 2015, 2, 1500025.
dc.identifier.citedreferenceM. Koike-Tani, T. Tani, S. B. Mehta, A. Verma, R. Oldenbourg, Mol. Reprod. Dev. 2015, 82, 548 – 562.
dc.identifier.citedreferenceS. B. Mehta, M. Shribak, R. Oldenbourg, J. Opt. 2013, 15, 094007.
dc.identifier.citedreferenceG. Bolla, A. Nangia, Cryst. Growth Des. 2012, 12, 6250 – 6259.
dc.identifier.citedreferenceG. S. Yoon, S. Sud, R. K. Keswani, T. J. Standiford, K. A. Stringer, G. R. Rosania, Mol. Pharm. 2015, 12, 2517 – 2527.
dc.identifier.citedreferenceG. S. Yoon, R. K. Keswani, S. Sud, P. Rzeczycki, M. Murashov, T. Koehn, T. J. Standiford, K. A. Stringer, G. R. Rosania, Antimicrob. Agents Chemother. 2016, 60, 3470 – 3479.
dc.identifier.citedreferenceR. K. Keswani, G. S. Yoon, S. Sud, K. A. Stringer, G. R. Rosania, Cytom. Part A 2015, 87, 855 – 867.
dc.identifier.citedreferenceC. Tian, R. K. Keswani, G. Gandikota, G. R. Rosania, X. Wang, Proc. SPIE 2016, 9708, 97084L - 1.
dc.identifier.citedreferenceR. K. Keswani, C. Tian, T. Peryea, G. Girish, X. Wang, G. R. Rosania, Sci. Rep. 2016, 6, 23528.
dc.identifier.citedreferenceT. J. Jentsch, J. Physiol. 2007, 578, 633 – 640.
dc.identifier.citedreferenceA. R. Graves, P. K. Curran, C. L. Smith, J. A. Mindell, Nature 2008, 453, 788 – 792.
dc.identifier.citedreferenceL. Jiang, K. Salao, H. Li, J. M. Rybicka, R. M. Yates, X. W. Luo, X. X. Shi, T. Kuffner, V. W.-W. Tsai, Y. Husaini, et al., J. Cell Sci. 2012, 125, 5479 – 5488.
dc.identifier.citedreferenceN. R. Patel, M. Bole, C. Chen, C. C. Hardin, A. T. Kho, J. Mih, L. Deng, J. Butler, D. Tschumperlin, J. J. Fredberg, et al., PLoS One 2012, 7, e 41024.
dc.identifier.citedreferenceK. M. Adlerz, H. Aranda-Espinoza, H. N. Hayenga, Eur. Biophys. J. 2016, 45, 301 – 309.
dc.identifier.citedreferenceJ. Pugin, I. Dunn, P. Jolliet, D. Tassaux, J. L. Magnenat, L. P. Nicod, J. C. Chevrolet, Am. J. Physiol. 1998, 275, L1040 – L1050.
dc.identifier.citedreferenceH. Shiratsuchi, M. D. Basson, Am. J. Physiol. Cell Physiol. 2004, 286, C 1358 –C 1366.
dc.identifier.citedreferenceH. Y. Shin, D. M. Frechette, N. Rohner, X. Zhang, D. A. Puleo, L. M. Bjursten, J. Tissue Eng. Regener. Med. 2013, 2, 408 – 417.
dc.identifier.citedreferenceS. Ghosh, M. K. Mishra, S. B. Kadambi, U. Ramamurty, G. R. Desiraju, Angew. Chem. Int. Ed. 2015, 54, 2674 – 2678; Angew. Chem. 2015, 127, 2712 – 2716.
dc.identifier.citedreferenceS. Ghosh, M. K. Mishra, S. Ganguly, G. R. Desiraju, J. Am. Chem. Soc. 2015, 137, 9912 – 9921.
dc.identifier.citedreferenceS. Ghosh, C. M. Reddy, Angew. Chem. Int. Ed. 2012, 51, 10319 – 10323; Angew. Chem. 2012, 124, 10465 – 10469.
dc.identifier.citedreferenceC.-T. Chen, S. Ghosh, C. M. Reddy, M. J. Buehler, Phys. Chem. Chem. Phys. 2014, 16, 13165 – 13171.
dc.identifier.citedreferenceS. Hayashi, T. Koizumi, Angew. Chem. Int. Ed. 2016, 55, 2701 – 2704; Angew. Chem. 2016, 128, 2751 – 2754.
dc.identifier.citedreferenceH. Mueller, Phys. Rev. 1935, 47, 947 – 957.
dc.identifier.citedreferenceL. J. Spencer, Mineral. Mag. 1921, 19, 263 – 274.
dc.identifier.citedreferenceM. K. Panda, S. Ghosh, N. Yasuda, T. Moriwaki, G. D. Mukherjee, C. M. Reddy, P. Naumov, Nat. Chem. 2015, 7, 65 – 72.
dc.identifier.citedreferenceC. M. Reddy, R. C. Gundakaram, S. Basavoju, M. T. Kirchner, K. A. Padmanabhan, G. R. Desiraju, Chem. Commun. 2005, 3945 – 3947.
dc.identifier.citedreferenceH. Koshima, R. Matsuo, M. Matsudomi, Y. Uemura, M. Shiro, Cryst. Growth Des. 2013, 13, 4330 – 4337.
dc.identifier.citedreferenceK. Godwod, A. T. Nagy, Z. Rek, Phys. Status Solidi A 1976, 34, 705.
dc.identifier.citedreferenceF. Terao, M. Morimoto, M. Irie, Angew. Chem. Int. Ed. 2012, 51, 901 – 904; Angew. Chem. 2012, 124, 925 – 928.
dc.identifier.citedreferenceJ. Baumgartner, G. Morin, N. Menguy, T. Perez Gonzalez, M. Widdrat, J. Cosmidis, D. Faivre, Proc. Natl. Acad. Sci. USA 2013, 110, 14883 – 14888.
dc.identifier.citedreferenceM. I. Siponen, P. Legrand, M. Widdrat, S. R. Jones, W.-J. Zhang, M. C. Y. Chang, D. Faivre, P. Arnoux, D. Pignol, Nature 2013, 502, 681 – 684.
dc.identifier.citedreferenceY. Wang, A. Lomakin, T. Hideshima, J. P. Laubach, O. Ogun, P. G. Richardson, N. C. Munshi, K. C. Anderson, G. B. Benedek, Proc. Natl. Acad. Sci. USA 2012, 109, 13359 – 13361.
dc.identifier.citedreferenceP. F. Weller, E. J. Goetzl, K. F. Austen, Proc. Natl. Acad. Sci. USA 1980, 77, 7440 – 7443.
dc.identifier.citedreferenceS. R. Mulay, H.-J. Anders, N. Engl. J. Med. 2016, 374, 2465 – 2476.
dc.identifier.citedreferenceD. J. Sullivan,  Jr., I. Y. Gluzman, D. E. Goldbery, Science 1996, 271, 219 – 222.
dc.identifier.citedreferenceR. T. Aplin, A. C. McDougall, Experientia 1975, 31, 468 – 469.
dc.identifier.citedreferenceP. Vicari, V. M. Sthel, N. Engl. J. Med. 2015, 373, e 27.
dc.identifier.citedreferenceF. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, J. Tschopp, Nature 2006, 440, 237 – 241.
dc.identifier.citedreferenceM. C. Cholo, H. C. Steel, P. B. Fourie, W. A. Germishuizen, R. Anderson, J. Antimicrob. Chemother. 2012, 67, 290 – 298.
dc.identifier.citedreferenceV. C. Barry, J. G. Belton, M. L. Conalty, J. M. Denneny, D. W. Edward, J. F. O’Sullivan, D. Twomey, F. Winder, Nature 1957, 179, 1013 – 1015.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.