Show simple item record

Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy

dc.contributor.authorCackowski, Frank C.
dc.contributor.authorEber, Matthew R.
dc.contributor.authorRhee, James
dc.contributor.authorDecker, Ann M.
dc.contributor.authorYumoto, Kenji
dc.contributor.authorBerry, Janice E.
dc.contributor.authorLee, Eunsohl
dc.contributor.authorShiozawa, Yusuke
dc.contributor.authorJung, Younghun
dc.contributor.authorAguirre‐ghiso, Julio A.
dc.contributor.authorTaichman, Russell S.
dc.date.accessioned2017-04-13T20:34:56Z
dc.date.available2018-07-09T17:42:24Zen
dc.date.issued2017-04
dc.identifier.citationCackowski, Frank C.; Eber, Matthew R.; Rhee, James; Decker, Ann M.; Yumoto, Kenji; Berry, Janice E.; Lee, Eunsohl; Shiozawa, Yusuke; Jung, Younghun; Aguirre‐ghiso, Julio A. ; Taichman, Russell S. (2017). "Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy." Journal of Cellular Biochemistry 118(4): 891-902.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/136285
dc.description.abstractMany prostate cancer (PCa) recurrences are thought to be due to reactivation of disseminated tumor cells (DTCs). We previously found a role of the TAM family of receptor tyrosine kinases TYRO3, AXL, and MERTK in PCa dormancy regulation. However, the mechanism and contributions of the individual TAM receptors is largely unknown. Knockdown of MERTK, but not AXL or TYRO3 by shRNA in PCa cells induced a decreased ratio of Pâ Erk1/2 to Pâ p38, increased expression of p27, NR2F1, SOX2, and NANOG, induced higher levels of histone H3K9me3 and H3K27me3, and induced a G1/G0 arrest, all of which are associated with dormancy. Similar effects were also observed with siRNA. Most importantly, knockdown of MERTK in PCa cells increased metastasis free survival in an intraâ cardiac injection mouse xenograft model. MERTK knockdown also failed to inhibit PCa growth in vitro and subcutaneous growth in vivo, which suggests that MERTK has specificity for dormancy regulation or requires a signal from the PCa microenvironment. The effects of MERTK on the cell cycle and histone methylation were reversed by p38 inhibitor SB203580, which indicates the importance of MAP kinases for MERTK dormancy regulation. Overall, this study shows that MERTK stimulates PCa dormancy escape through a MAP kinase dependent mechanism, also involving p27, pluripotency transcription factors, and histone methylation. J. Cell. Biochem. 118: 891â 902, 2017. © 2016 Wiley Periodicals, Inc.Escape from cellular dormancy is the process where previously dormant single disseminated tumor cells reactivate to form cancer microâ metastases, which continue to grow and ultimately make the disease incurable. Here, were show that Mer tyrosine kinase is important for prostate cancer dormancy escape through a mechanism involving MAP kinases, cell cycle inhibitors, epigenetics, and transcription factors associated with pluripotent cells.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherTYRO3
dc.subject.otherDISSEMINATED TUMOR CELL
dc.subject.otherDORMANCY
dc.subject.otherPROSTATE CANCER
dc.subject.otherMERTK
dc.subject.otherAXL
dc.titleMer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136285/1/jcb25768_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136285/2/jcb25768.pdf
dc.identifier.doi10.1002/jcb.25768
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceSharma S, Xing F, Liu Y, Wu K, Said N, Pochampally R, Shiozawa Y, Lin HK, Balaji KC, Watabe K. 2016. Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in the bone. J Biol Chem 291 ( 37 ):19351 â 19363.
dc.identifier.citedreferenceAguirreâ Ghiso JA, Ossowski L, Rosenbaum SK. 2004. Green fluorescent protein tagging of extracellular signalâ regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64 ( 20 ): 7336 â 7345.
dc.identifier.citedreferenceAmling CL, Blute ML, Bergstralh EJ, Seay TM, Slezak J, Zincke H. 2000. Longâ term hazard of progression after radical prostatectomy for clinically localized prostate cancer: Continued risk of biochemical failure after 5 years. J Urol 164 ( 1 ): 101 â 105.
dc.identifier.citedreferenceBragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, Schewe DM, Aguirreâ Ghiso JA. 2013. TGFâ beta2 dictates disseminated tumour cell fate in target organs through TGFâ betaâ RIII and p38alpha/beta signalling. Nat Cell Biol 15 ( 11 ): 1351 â 1361.
dc.identifier.citedreferenceCaberoy NB, Zhou Y, Li W. 2010. Tubby and tubbyâ like protein 1 are new MerTK ligands for phagocytosis. EMBO J 29 ( 23 ): 3898 â 3910.
dc.identifier.citedreferenceChery L, Lam HM, Coleman I, Lakely B, Coleman R, Larson S, Aguirreâ Ghiso JA, Xia J, Gulati R, Nelson PS, Montgomery B, Lange P, Snyder LA, Vessella RL, Morrissey C. 2014. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5 ( 20 ): 9939 â 9951.
dc.identifier.citedreferenceFaltermeier CM, Drake JM, Clark PM, Smith BA, Zong Y, Volpe C, Mathis C, Morrissey C, Castor B, Huang J, Witte ON. 2015. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113 ( 2 ): E172 â E181.
dc.identifier.citedreferenceGarabuczi E, Sarang Z, Szondy Z. 2015. Glucocorticoids enhance prolonged clearance of apoptotic cells by upregulating liver X receptor, peroxisome proliferatorâ activated receptorâ delta and UCP2. Biochim Biophys Acta 1853 ( 3 ): 573 â 582.
dc.identifier.citedreferenceGraham DK, DeRyckere D, Davies KD, Earp HS. 2014. The TAM family: Phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 14 ( 12 ): 769 â 785.
dc.identifier.citedreferenceJung Y, Decker AM, Wang J, Lee E, Kana LA, Yumoto K, Cackowski FC, Rhee J, Carmeliet P, Buttitta L, Morgan TM, Taichman RS. 2016. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7 ( 18 ): 25698 â 25711.
dc.identifier.citedreferenceJung Y, Shiozawa Y, Wang J, McGregor N, Dai J, Park SI, Berry JE, Havens AM, Joseph J, Kim JK, Patel L, Carmeliet P, Daignault S, Keller ET, McCauley LK, Pienta KJ, Taichman RS. 2012. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia 14 ( 5 ): 429 â 439.
dc.identifier.citedreferenceKobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, Pai SK, Liu W, Fukuda K, Chambers C, Wilber A, Watabe K. 2011. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stemâ like cells in bone. J Exp Med 208 ( 13 ): 2641 â 2655.
dc.identifier.citedreferenceLee E, Decker AM, Cackowski FC, Kana LA, Yumoto K, Jung Y, Wang J, Buttitta L, Morgan TM, Taichman RS. 2016. Growth arrestâ specific 6 (GAS6) promotes prostate cancer survival by G1 Arrest/S phase delay and inhibition of apoptotic pathway during chemotherapy in bone marrow. J Cell Biochem 117 ( 12 ): 2815 â 2824.
dc.identifier.citedreferenceMorgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ, Gallaher IS, Vessella RL. 2009. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15 ( 2 ): 677 â 683.
dc.identifier.citedreferenceNing P, Zhong JG, Jiang F, Zhang Y, Zhao J, Tian F, Li W. 2016. Role of protein S in castrationâ resistant prostate cancerâ like cells. Endocr Relat Cancer 23 ( 8 ): 595 â 607.
dc.identifier.citedreferenceRanganathan AC, Adam AP, Zhang L, Aguirreâ Ghiso JA. 2006. Tumor cell dormancy induced by p38SAPK and ERâ stress signaling: An adaptive advantage for metastatic cells ? Cancer Biol Ther 5 ( 7 ): 729 â 735.
dc.identifier.citedreferenceShiozawa Y, Berry JE, Eber MR, Jung Y, Yumoto K, Cackowski FC, Yoon HJ, Parsana P, Mehra R, Wang J, McGee S, Lee E, Nagrath S, Pienta KJ, Taichman RS. 2016. The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget. doi: 10.18632/oncotarget.9251 [Epub ahead of print].
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS. 2010. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12 ( 2 ): 116 â 127.
dc.identifier.citedreferenceSosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, Ekpin E, George A, Zheng Y, Lam HM, Morrissey C, Chung CY, Farias EF, Bernstein E, Aguirreâ Ghiso JA. 2015. NR2F1 controls tumour cell dormancy via SOX9â and RARbetaâ driven quiescence programmes. Nat Commun 6: 6170.
dc.identifier.citedreferenceTaichman RS, Patel LR, Bedenis R, Wang J, Weidner S, Schumann T, Yumoto K, Berry JE, Shiozawa Y, Pienta KJ. 2013. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8 ( 4 ): e61873.
dc.identifier.citedreferenceTakeishi S, Nakayama KI. 2016. To wake up cancer stem cells, or to let them sleep, that is the question. Cancer Sci 107 ( 7 ): 875 â 881.
dc.identifier.citedreferenceYumoto K, Eber M, Wang J, Cackowski F, Lee E, Nobre AR, Aguirreâ Ghiso J, Jung Y, Taichman R. 2016. Axl is required for TGFâ β2â induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6: 36520. doi: 10.1038./srep36520
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.