Show simple item record

Effects of EMD liquid (Osteogain) on periodontal healing in class III furcation defects in monkeys

dc.contributor.authorShirakata, Yoshinori
dc.contributor.authorMiron, Richard J.
dc.contributor.authorNakamura, Toshiaki
dc.contributor.authorSena, Kotaro
dc.contributor.authorShinohara, Yukiya
dc.contributor.authorHorai, Naoto
dc.contributor.authorBosshardt, Dieter D.
dc.contributor.authorNoguchi, Kazuyuki
dc.contributor.authorSculean, Anton
dc.date.accessioned2017-04-13T20:35:26Z
dc.date.available2018-05-15T21:02:50Zen
dc.date.issued2017-03
dc.identifier.citationShirakata, Yoshinori; Miron, Richard J.; Nakamura, Toshiaki; Sena, Kotaro; Shinohara, Yukiya; Horai, Naoto; Bosshardt, Dieter D.; Noguchi, Kazuyuki; Sculean, Anton (2017). "Effects of EMD liquid (Osteogain) on periodontal healing in class III furcation defects in monkeys." Journal of Clinical Periodontology 44(3): 298-307.
dc.identifier.issn0303-6979
dc.identifier.issn1600-051X
dc.identifier.urihttps://hdl.handle.net/2027.42/136308
dc.description.abstractAimTo evaluate the effect of a novel liquid carrier system of enamel matrix derivative (Osteogain) soaked on an absorbable collagen sponge (ACS) upon periodontal wound healing/regeneration in furcation defects in monkeys.Materials and MethodsThe stability of the conventional enamel matrix derivative (Emdogain) and Osteogain adsorbed onto ACS was evaluated by ELISA. Chronic class III furcation defects were created at teeth 36, 37, 46, 47 in three monkeys (Macaca fascicularis). The 12 defects were assigned to one of the following treatments: (1) open flap debridement (OFD) + ACS, (2) OFD+Emdogain/ACS, (3) OFD+Osteogain/ACS, and (4) OFD alone. At 16 weeks following reconstructive surgery, the animals were killed for histological evaluation.ResultsA 20–60% significantly higher amount of total adsorbed amelogenin was found for ACS‐loaded Osteogain when compared to Emdogain. The histomorphometric analysis revealed that both approaches (OFD + Emdogain/ACS and OFD + Osteogain/ACS) resulted in higher amounts of connective tissue attachment and bone formation compared to treatment with OFD + ACS and OFD alone. Furthermore, OFD + Osteogain/ACS group showed higher new attachment formation, cementum, and new bone area.ConclusionsWithin their limits, the present data indicate that Osteogain possesses favourable physicochemical properties facilitating adsorption of amelogenin on ACS and may additionally enhance periodontal wound healing/regeneration when compared to Emdogain.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherabsorbable collagen sponge
dc.subject.otherclass III furcation defect
dc.subject.otherenamel matrix proteins
dc.subject.otherperiodontal regeneration
dc.subject.othercarrier
dc.titleEffects of EMD liquid (Osteogain) on periodontal healing in class III furcation defects in monkeys
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136308/1/jcpe12663.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136308/2/jcpe12663_am.pdf
dc.identifier.doi10.1111/jcpe.12663
dc.identifier.sourceJournal of Clinical Periodontology
dc.identifier.citedreferenceRossa, C. Jr, Marcantonio, E. Jr, Cirelli, J. A., Marcantonio, R. A., Spolidorio, L. C. & Fogo, J. C. ( 2000 ) Regeneration of Class III furcation defects with basic fibroblast growth factor (b‐FGF) associated with GTR. A descriptive and histometric study in dogs. Journal of Periodontology 71, 775 – 784.
dc.identifier.citedreferenceLindhe, J., Pontoriero, R., Berglundh, T. & Araujo, M. ( 1995 ) The effect of flap management and bioresorbable occlusive devices in GTR treatment of degree III furcation defects. An experimental study in dogs. Journal of Clinical Periodontology 22, 276 – 283.
dc.identifier.citedreferenceMacNeill, S. R., Cobb, C. M., Rapley, J. W., Glaros, A. G. & Spencer, P. ( 1999 ) In vivo comparison of synthetic osseous graft materials. A preliminary study. Journal of Clinical Periodontology 26, 239 – 245.
dc.identifier.citedreferenceMatarasso, M., Iorio‐Siciliano, V., Blasi, A., Ramaglia, L., Salvi, G. E. & Sculean, A. ( 2015 ) Enamel matrix derivative and bone grafts for periodontal regeneration of intrabony defects. A systematic review and meta‐analysis. Clinical Oral investigations 19, 1581 – 1593.
dc.identifier.citedreferenceMcPherson, J. M. ( 1992 ) The utility of collagen‐based vehicles in delivery of growth factors for hard and soft tissue wound repair. Clinical Materials 9, 225 – 234.
dc.identifier.citedreferenceMellonig, J. T. ( 1999 ) Enamel matrix derivative for periodontal reconstructive surgery : technique and clinical and histologic case report. The International Journal of Periodontics and Restorative Dentistry 19, 8 – 19.
dc.identifier.citedreferenceMiron, R. J., Guillemette, V., Zhang, Y., Chandad, F. & Sculean, A. ( 2014 ) Enamel matrix derivative in combination with bone grafts: a review of the literature. Quintessence International 45, 475 – 487.
dc.identifier.citedreferenceMiron, R. J., Bosshardt, D. D., Buser, D., Zhang, Y., Tugulu, S., Gemperli, A., Dard, M., Caluseru, O. M., Chandad, F. & Sculean, A. ( 2015 ) Comparison of the capacity of enamel matrix derivative gel and enamel matrix derivative in liquid formulation to adsorb to bone grafting materials. Journal of Periodontology 86, 578 – 587.
dc.identifier.citedreferenceMiron, R. J., Sculean, A., Cochran, D. L., Froum, S., Zucchelli, G., Nemcovsky, C., Donos, N., Lyngstadaas, S. P., Deschner, J., Dard, M., Stavropoulos, A., Zhang, Y., Trombelli, L., Kasaj, A., Shirakata, Y., Cortellini, P., Tonetti, M., Rasperini, G., Jepsen, S. & Bosshardt, D. D. ( 2016a ) 20 years of Enamel matrix derivative: the past, the present and the future. Journal of Clinical Periodontology 43, 668 – 683.
dc.identifier.citedreferenceMiron, R. J., Fujioka‐Kobayashi, M., Zhang, Y., Caballé‐Serrano, J., Shirakata, Y., Bosshardt, D. D., Buser, D. & Sculean, A. ( 2016b ) Osteogain improves osteoblast adhesion, proliferation and differentiation on a bovine‐derived natural bone mineral. Clinical Oral Implants Research. doi: 10.1111/clr.12802.
dc.identifier.citedreferenceMiron, R. J., Chandad, F., Buser, D., Sculean, A., Cochran, D. L. & Zhang, Y. ( 2016c ) Effect of enamel matrix derivative (EMD)‐liquid on osteoblast and periodontal ligament cell proliferation and differentiation. Journal of Periodontology 87, 91 – 99.
dc.identifier.citedreferenceNyman, S., Lindhe, J. & Rosling, B. ( 1977 ) Periodontal surgery in plaque‐infected dentitions. Journal of Clinical Periodontology 4, 240 – 249.
dc.identifier.citedreferencePellegrini, G., Seol, Y. J., Gruber, R. & Giannobile, W. V. ( 2009 ) Pre‐clinical models for oral and periodontal reconstructive therapies. Journal of Dental Research 88, 1065 – 1076.
dc.identifier.citedreferencePotijanyakul, P., Sattayasansakul, W., Pongpanich, S., Leepong, N. & Kintarak, S. ( 2010 ) Effects of enamel matrix derivative on bioactive glass in rat calvarium defects. Journal of Oral Implantology 36, 195 – 204.
dc.identifier.citedreferenceRosling, B., Nyman, S., Lindhe, J. & Jern, B. ( 1976 ) The healing potential of the periodontal tissues following different techniques of periodontal surgery in plaque‐free dentitions. A 2‐year clinical study. Journal of Clinical Periodontology 3, 233 – 250.
dc.identifier.citedreferenceSculean, A., Alesandri, R., Miron, R., Salvi, G. E. & Bosshardt, D. D. ( 2011 ) Enamel matrix proteins and periodontal wound healing and regeneration. Clinical Advances in Periodontics 1, 101 – 117.
dc.identifier.citedreferenceSculean, A., Nikolidakis, D., Nikou, G., Ivanovic, A., Chapple, I. L. & Stavropoulos, A. ( 2015 ) Biomaterials for promoting periodontal regeneration in human intrabony defects: a systematic review. Periodontology 2000 68, 182 – 216.
dc.identifier.citedreferenceShirakata, Y., Oda, S., Kinoshita, A., Kikuchi, S., Tsuchioka, H. & Ishikawa, I. ( 2002 ) Histocompatible healing of periodontal defects after application of an injectable calcium phosphate bone cement. A preliminary study in dogs. Journal of Periodontology 73, 1043 – 1053.
dc.identifier.citedreferenceShirakata, Y., Yoshimoto, T., Goto, H., Yonamine, Y., Kadomatsu, H., Miyamoto, M., Nakamura, T., Hayashi, C. & Izumi, Y. ( 2007 ) Favorable periodontal healing of 1‐wall infrabony defects after application of calcium phosphate cement wall alone or in combination with enamel matrix derivative: a pilot study with canine mandibles. Journal of Periodontology 78, 889 – 898.
dc.identifier.citedreferenceStähli, A., Miron, R. J., Bosshardt, D. D., Sculean, A. & Gruber, R. ( 2016 ) Collagen membranes adsorb the transforming growth factor‐β receptor I kinase‐dependent activity of enamel matrix derivative. Journal of Periodontology 87, 583 – 590.
dc.identifier.citedreferenceSusin, C., Fiorini, T., Lee, J., De Stefano, J. A., Dickinson, D. P. & Wikesjö, U. M. ( 2015 ) Wound healing following surgical and regenerative periodontal therapy. Periodontology 2000 68, 83 – 98.
dc.identifier.citedreferenceTonetti, M. S., Prato, G. P. & Cortellini, P. ( 1996 ) Factors affecting the healing response of intrabony defects following guided tissue regeneration and access flap surgery. Journal of Clinical Periodontology 23, 548 – 556.
dc.identifier.citedreferenceTu, Y. K., Woolston, A. & Faggison, C. M. ( 2010 ) Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivative? A network meta‐analysis of randomized‐controlled trials. Journal of Clinical Periodontology 37, 59 – 79.
dc.identifier.citedreferenceYamashita, M., Lazarov, M., Jones, A. A., Mealey, B. L., Mellonig, J. T. & Cochran, D. ( 2010 ) Periodontal regeneration using an anabolic peptide with two carriers in baboons. Journal of Periodontology 81, 727 – 736.
dc.identifier.citedreferenceYilmaz, S., Cakar, G., Yildirim, B. & Sculean, A. ( 2010 ) Healing of two and three wall intrabony periodontal defects following treatment with an enamel matrix derivative combined with autogenous bone. Journal of Clinical Periodontology 37, 544 – 550.
dc.identifier.citedreferenceYoshinuma, N., Sato, S., Fukuyama, T., Murai, M. & Ito, K. ( 2012 ) Ankylosis of nonresorbable hydroxyapatite graft material as a contributing factor in recurrent periodontitis. The International Journal of Periodontics and Restorative Dentistry 32, 331 – 336.
dc.identifier.citedreferenceZhang, Y., Jing, D., Buser, D., Sculean, A., Chandad, F. & Miron, R. J. ( 2016 ) Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study. Clinical Oral Investigations 20, 589 – 595.
dc.identifier.citedreferenceAraujo, M. G. & Lindhe, J. ( 1998 ) GTR treatment of degreeIII furcation defects following application of enamel matrix proteins. An experimental study in dogs. Journal of Clinical Periodontology 25, 524 – 530.
dc.identifier.citedreferenceBokan, I., Bill, J. S. & Schlagenhauf, U. ( 2006 ) Primary flap closure combined with Emdogain alone or Emdogain and cerasorb in the treatment of intra‐bony defects. Journal of Clinical Periodontology 33, 885 – 893.
dc.identifier.citedreferenceCaton, J., Mota, L., Gandini, L. & Laskaris, B. ( 1994 ) Non‐human primate models for testing the efficacy and safety of periodontal regeneration procedures. Journal of Periodontology 65, 1143 – 1150.
dc.identifier.citedreferenceCochran, D. L., Jones, A. A., Lilly, L. C., Fiorellini, J. P. & Howell, H. ( 2000 ) Evaluation of recombinant human bone morphogenetic protein‐2 in oral applications including the use of endosseous implants: 3‐year results of a pilot study in humans. Journal of Periodontology 71, 1241 – 1257.
dc.identifier.citedreferenceCochran, D. L., Jones, A., Heiji, L., Mellonig, J. T., Schoolfield, J. & King, G. N. ( 2003 ) Periodontal regeneration with a combination of enamel matrix proteins and autogenous bone grafting. Journal of Periodontology 74, 1269 – 1281.
dc.identifier.citedreferenceDonos, N., Sculean, A., Glavind, L., Reich, E. & Karring, T. ( 2003 ) Wound healing of degree III furcation involvements following guided tissue regeneration and/or Emdogain. A histologic study. Journal of Clinical Periodontology 30, 1061 – 1068.
dc.identifier.citedreferenceGiannobile, W. V., Finkelman, R. D. & Lynch, S. E. ( 1994 ) Comparison of canine and non‐human primate animal models for periodontal regenerative therapy: results following a single administration of PDGF/IGF‐I. Journal of Periodontology 65, 1158 – 1168.
dc.identifier.citedreferenceGkranias, N. D., Graziani, F., Sculean, A. & Donos, N. ( 2012 ) Wound healing following regenerative procedures in furcation degree III defects: histomorphometric outcomes. Clinical Oral Investigations 16, 239 – 249.
dc.identifier.citedreferenceGurinsky, B. S., Mills, M. P. & Mellonig, J. T. ( 2004 ) Clinical evaluation of demineralized freeze‐dried bone allograft and enamel matrix derivative versus enamel matrix derivative alone for the treatment of periodontal osseous defects in humans. Journal of Periodontology 75, 1309 – 1318.
dc.identifier.citedreferenceHammarström, L., Heijl, L. & Gestrelius, S. ( 1997 ) Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. Journal of Clinical Periodontology 24, 669 – 677.
dc.identifier.citedreferenceHeijl, L., Heden, G., Svärdström, G. & Östgren, A. ( 1997 ) Enamel matrix derivative (Emdogain Ⓡ ) in the treatment of intrabony periodontal defects. Journal of Clinical Periodontology 24, 705 – 714.
dc.identifier.citedreferenceHovey, L. R., Jones, A. A., McGuire, M., Mellonig, J. T., Schoolfield, J. & Cochran, D. L. ( 2006 ) Application of periodontal tissue engineering using enamel matrix derivative and a human fibroblast‐derived dermal substitute to stimulate periodontal wound healing in Class III furcation defects. Journal of Periodontology 77, 790 – 799.
dc.identifier.citedreferenceIvanovic, A., Nikou, G., Miron, R. J., Nikolidakis, D. & Sculean, A. ( 2014 ) Which biomaterials may promote periodontal regeneration in intrabony periodontal defects? A systematic review of preclinical studies. Quintessence International 45, 385 – 395.
dc.identifier.citedreferenceKim, Y. T., Wikesjö, U. M., Jung, U. W., Lee, J. S., Kim, T. G. & Kim, C. K. ( 2013 ) Comparison between a ß‐tricalcium phosphate and an absorbable collagen sponge carrier technology for rhGDF‐5‐stimulated periodontal wound healing/regeneration. Journal of Periodontology 84, 812 – 820.
dc.identifier.citedreferenceKuru, B., Yilmaz, S., Argin, K. & Noyan, U. ( 2006 ) Enamel matrix derivative alone or in combination with a bioactive glass in wide intrabony defects. Clinical Oral Investigations 10, 227 – 234.
dc.identifier.citedreferenceLekovic, V., Camargo, P. M., Weinlaender, M., Nedic, M., Aleksic, Z. & Kenney, E. B. ( 2000 ) A comparison between enamel matrix proteins used alone or in combination with bovine porous bone mineral in the treatment of intrabony periodontal defects in humans. Journal of Periodontology 71, 1110 – 1116.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.