Show simple item record

Surveillance of fetal lung lesions using the congenital pulmonary airway malformation volume ratio: natural history and outcomes

dc.contributor.authorMacardle, Catriona A.
dc.contributor.authorEhrenberg‐buchner, Stacey
dc.contributor.authorSmith, Ethan A.
dc.contributor.authorDillman, Jonathan R.
dc.contributor.authorMychaliska, George B.
dc.contributor.authorTreadwell, Marjorie C.
dc.contributor.authorKunisaki, Shaun M.
dc.date.accessioned2017-04-14T15:10:27Z
dc.date.available2017-04-14T15:10:27Z
dc.date.issued2016-03
dc.identifier.citationMacardle, Catriona A.; Ehrenberg‐buchner, Stacey ; Smith, Ethan A.; Dillman, Jonathan R.; Mychaliska, George B.; Treadwell, Marjorie C.; Kunisaki, Shaun M. (2016). "Surveillance of fetal lung lesions using the congenital pulmonary airway malformation volume ratio: natural history and outcomes." Prenatal Diagnosis 36(3): 282-289.
dc.identifier.issn0197-3851
dc.identifier.issn1097-0223
dc.identifier.urihttps://hdl.handle.net/2027.42/136421
dc.description.abstractObjectivesThe congenital pulmonary airway malformation volume ratio (CVR) is a widely used sonographic measure of relative mass size in fetuses with lung malformations. The purposes of this study were to examine serial CVR measurements to understand longitudinal growth patterns and to determine correlation with postnatal imaging.MethodsAn institutional review boardâ approved retrospective review was performed on fetuses referred for an echogenic lung malformation between 2002 and 2014. For each fetus, the CVR was prospectively calculated using 2D ultrasound and followed with advancing gestation.ResultsBased on 40 fetuses, the mean initial CVR was 0.51â ±â 0.07 at 20.5â ±â 0.3â weeks of gestation. The CVR increased after 24â weeks of gestation (pâ =â 0.0014), peaking at a CVR of 0.96â ±â 0.11 at 25.5â ±â 0.05â weeks, followed by a significant decrease in the CVR to 0.43â ±â 0.07 prior to term (pâ <â 0.0001). However, approximately one third showed no appreciable increase in size. The mean CVR was significantly correlated with postnatal chest computed tomography (CT) size dimensions (pâ =â 0.0032) and likelihood for lung resection (pâ =â 0.0055).ConclusionsFetal lung malformations tend to follow one of two distinct growth patterns, characterized by either (1) a maximal CVR between 25 and 26â weeks of gestation or (2) minimal change in relative growth. The mean CVR correlates with postnatal CT size and operative management. © 2015 John Wiley & Sons, Ltd.What’s already known about the topic?The congenital pulmonary airway malformation volume ratio (CVR) is a common prenatal ultrasound measure of relative mass size in fetuses with lung malformations.The initial CVR and maximum CVR have been shown to be predictive of hydrops and neonatal respiratory compromise, respectively.What does this study add?Gestational age is important when interpreting CVR measurements because two thirds of lesions increase in size at 25â 26â weeks before spontaneous involution occurs.The mean CVR correlates with size measured by postnatal computed tomography scan.
dc.publisherWiley Periodicals, Inc.
dc.titleSurveillance of fetal lung lesions using the congenital pulmonary airway malformation volume ratio: natural history and outcomes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelWomen’s and Gender Studies
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbsecondlevelObstetrics and Gynecology
dc.subject.hlbsecondlevelRadiology
dc.subject.hlbtoplevelHumanities
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136421/1/pd4761_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136421/2/pd4761.pdf
dc.identifier.doi10.1002/pd.4761
dc.identifier.sourcePrenatal Diagnosis
dc.identifier.citedreferenceEpelman M, Kreiger PA, Servaes S, et al. Current imaging of prenatally diagnosed congenital lung lesions. Semin Ultrasound CT MR 2010; 31: 141 â 57.
dc.identifier.citedreferenceKunisaki SM, Barnewolt CE, Estroff JA, et al. Large fetal congenital cystic adenomatoid malformations: growth trends and patient survival. J Pediatr Surg 2007; 42: 404 â 10.
dc.identifier.citedreferencePeralta CF, Cavoretto P, Csapo B, et al. Assessment of lung area in normal fetuses at 12â 32â weeks. Ultrasound Obstet Gynecol 2005; 26: 718 â 24.
dc.identifier.citedreferenceCass DL, Quinn TM, Yang EY, et al. Increased cell proliferation and decreased apoptosis characterize congenital cystic adenomatoid malformation of the lung. J Pediatr Surg 1998; 33: 1043 â 6 discussion 47.
dc.identifier.citedreferenceLangston C. New concepts in the pathology of congenital lung malformations. Semin Pediatr Surg 2003; 12: 17 â 37.
dc.identifier.citedreferenceKunisaki SM, Fauza DO, Nemes LP, et al. Bronchial atresia: the hidden pathology within a spectrum of prenatally diagnosed lung masses. J Pediatr Surg 2006; 41: 61 â 5 discussion 61â 5.
dc.identifier.citedreferenceMeizner I, Rosenak D. The vanishing fetal intrathoracic mass: consider an obstructing mucous plug. Ultrasound Obstet Gynecol 1995; 5: 275 â 7.
dc.identifier.citedreferenceYong PJ, Von Dadelszen P, Carpara D, et al. Prediction of pediatric outcome after prenatal diagnosis and expectant antenatal management of congenital cystic adenomatoid malformation. Fetal Diagn Ther 2012; 31: 94 â 102.
dc.identifier.citedreferenceAite L, Zaccara A, Trucchi A, et al. Is counselling for CCAM that difficult? Learning from parental experience. J Prenat Med 2011; 5: 65 â 8.
dc.identifier.citedreferenceZeidan S, Gorincour G, Potier A, et al. Congenital lung malformation: evaluation of prenatal and postnatal radiological findings. Respirology 2009; 14: 1005 â 11.
dc.identifier.citedreferenceNg C, Stanwell J, Burge DM, et al. Conservative management of antenatally diagnosed cystic lung malformations. Arch Dis Child 2014; 99: 432 â 7.
dc.identifier.citedreferenceWong A, Vieten D, Singh S, et al. Longâ term outcome of asymptomatic patients with congenital cystic adenomatoid malformation. Pediatr Surg Int 2009; 25: 479 â 85.
dc.identifier.citedreferenceAziz D, Langer JC, Tuuha SE, et al. Perinatally diagnosed asymptomatic congenital cystic adenomatoid malformation: to resect or not? J Pediatr Surg 2004; 39: 329 â 34 discussion 29â 34.
dc.identifier.citedreferenceKunisaki SM, Ehrenbergâ Buchner S, Dillman JR, et al. Vanishing fetal lung malformations: prenatal sonographic characteristics and postnatal outcomes. J Pediatr Surg 2015; 50: 978 â 82.
dc.identifier.citedreferencePumberger W, Hormann M, Deutinger J, et al. Longitudinal observation of antenatally detected congenital lung malformations (CLM): natural history, clinical outcome and longâ term followâ up. Eur J Cardiothorac Surg 2003; 24: 703 â 11.
dc.identifier.citedreferenceWinters WD, Effmann EL, Nghiem HV, et al. Disappearing fetal lung masses: importance of postnatal imaging studies. Pediatr Radiol 1997; 27: 535 â 9.
dc.identifier.citedreferenceAdzick NS. Management of fetal lung lesions. Clin Perinatol 2009; 36: 363 â 76 x.
dc.identifier.citedreferenceLima JS, Camargos PA, Aguiar RA, et al. Pre and perinatal aspects of congenital cystic adenomatoid malformation of the lung. J Matern Fetal Neonatal Med 2014; 27: 228 â 32.
dc.identifier.citedreferenceEhrenbergâ Buchner S, Stapf AM, Berman DR, et al. Fetal lung lesions: can we start to breathe easier? Am J Obstet Gynecol 2013; 208 ( 151 ): e1 â e7.
dc.identifier.citedreferenceAdzick NS, Harrison MR, Glick PL, et al. Fetal cystic adenomatoid malformation: prenatal diagnosis and natural history. J Pediatr Surg 1985; 20: 483 â 8.
dc.identifier.citedreferenceAdzick NS, Harrison MR, Crombleholme TM, et al. Fetal lung lesions: management and outcome. Am J Obstet Gynecol 1998; 179: 884 â 9.
dc.identifier.citedreferenceMiller JA, Corteville JE, Langer JC. Congenital cystic adenomatoid malformation in the fetus: natural history and predictors of outcome. J Pediatr Surg 1996; 31: 805 â 8.
dc.identifier.citedreferenceDavenport M, Warne SA, Cacciaguerra S, et al. Current outcome of antenally diagnosed cystic lung disease. J Pediatr Surg 2004; 39: 549 â 56.
dc.identifier.citedreferenceRuchonnetâ Metrailler I, Leroyâ Terquem E, Stirnemann J, et al. Neonatal outcomes of prenatally diagnosed congenital pulmonary malformations. Pediatrics 2014; 133: e1285 â e1291.
dc.identifier.citedreferenceCass DL, Olutoye OO, Cassady CI, et al. Prenatal diagnosis and outcome of fetal lung masses. J Pediatr Surg 2011; 46: 292 â 298.
dc.identifier.citedreferenceHadchouel A, Benachi A, Revillon Y, et al. Factors associated with partial and complete regression of fetal lung lesions. Ultrasound Obstet Gynecol 2011; 38: 88 â 93.
dc.identifier.citedreferenceKhalek N, Johnson MP. Management of prenatally diagnosed lung lesions. Semin Pediatr Surg 2013; 22: 24 â 9.
dc.identifier.citedreferenceLaberge JM, Flageole H, Pugash D, et al. Outcome of the prenatally diagnosed congenital cystic adenomatoid lung malformation: a Canadian experience. Fetal Diagn Ther 2001; 16: 178 â 86.
dc.identifier.citedreferenceCrombleholme TM, Coleman B, Hedrick H, et al. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg 2002; 37: 331 â 8.
dc.identifier.citedreferencePeranteau WH, Wilson RD, Liechty KW, et al. Effect of maternal betamethasone administration on prenatal congenital cystic adenomatoid malformation growth and fetal survival. Fetal Diagn Ther 2007; 22: 365 â 71.
dc.identifier.citedreferenceHedrick HL, Flake AW, Crombleholme TM, et al. The ex utero intrapartum therapy procedure for highâ risk fetal lung lesions. J Pediatr Surg 2005; 40: 1038 â 1043 discussion 44.
dc.identifier.citedreferenceRoggin KK, Breuer CK, Carr SR, et al. The unpredictable character of congenital cystic lung lesions. J Pediatr Surg 2000; 35: 801 â 5.
dc.identifier.citedreferencePlatt LD, DeVore GR. In utero diagnosis of hydrops fetalis: ultrasound methods. Clin Perinatol 1982; 9: 627 â 36.
dc.identifier.citedreferenceCass DL, Olutoye OO, Ayres NA, et al. Defining hydrops and indications for open fetal surgery for fetuses with lung masses and vascular tumors. J Pediatr Surg 2012; 47: 40 â 5.
dc.identifier.citedreferenceHaggerty JE, Smith EA, Kunisaki SM, et al. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose. Pediatr Radiol 2015; 45: 989 â 97.
dc.identifier.citedreferenceKunisaki SM, Powelson IA, Haydar B, et al. Thoracoscopic vs open lobectomy in infants and young children with congenital lung malformations. J Am Coll Surg 2014; 218: 261 â 70.
dc.identifier.citedreferenceJani J, Nicolaides KH, Keller RL, et al. Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 2007; 30: 67 â 71.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.