Show simple item record

Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring

dc.contributor.authorde Beer, Dirk
dc.contributor.authorWeber, Miriam
dc.contributor.authorChennu, Arjun
dc.contributor.authorHamilton, Trinity
dc.contributor.authorLott, Christian
dc.contributor.authorMacalady, Jennifer
dc.contributor.authorM. Klatt, Judith
dc.date.accessioned2017-04-14T15:10:58Z
dc.date.available2018-05-04T20:56:58Zen
dc.date.issued2017-03
dc.identifier.citationde Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M. Klatt, Judith (2017). "Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring." Environmental Microbiology 19(3): 1251-1265.
dc.identifier.issn1462-2912
dc.identifier.issn1462-2920
dc.identifier.urihttps://hdl.handle.net/2027.42/136451
dc.publisherWiley Periodicals, Inc.
dc.publisherPrinceton University Press
dc.titleOxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136451/1/emi13654.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/136451/2/emi13654_am.pdf
dc.identifier.doi10.1111/1462-2920.13654
dc.identifier.sourceEnvironmental Microbiology
dc.identifier.citedreferencePreisler, A., de Beer, D., Lichtschlag, A., Lavik, G., Boetius, A., and Jørgensen, B.B. ( 2007 ) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1: 341 – 353.
dc.identifier.citedreferenceNielsen, L.P., Risgaard‐Pedersen, N., Fossing, H., Christensen, P.B., and Sayama, M. ( 2010 ) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071 – 1074.
dc.identifier.citedreferenceNübel, U., Bateson, M.M., Vandieken, V., Wieland, A., Kühl, M., and Ward, D.A. ( 2002 ) Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae ‐related bacteria in hot spring microbial mats. Appl Environm Microbiol 68: 4593 – 4603.
dc.identifier.citedreferenceOren, A., Padan, E., and Avron, M. ( 1977 ) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc Natl Acad Sci 74: 2152 – 2156.
dc.identifier.citedreferenceOvermann, J., and Garcia‐Pichel, F. ( 2012 ) The phototrophic way of life. In Prokaryotes. Rosenberg, E. (ed.). Berlin, Heidelberg: Springer, pp. 203 – 257.
dc.identifier.citedreferenceOvermann, J., Cypionka, H., and Pfennig, N. ( 1992 ) An extremely low‐light‐adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150 – 155.
dc.identifier.citedreferenceRaiswell, R., Canfield, D.E., and Berner, R.A. ( 1994 ) A comparison of iron extraction methods for the determination of degree of pyritisation and the recognition of iron‐limited pyrite formation. Chem Geol 111: 101 – 110.
dc.identifier.citedreferenceRamsing, N.B., Ferris, M.J., and Ward, D.M. ( 2000 ) Highly ordered vertical structure of Synechococcus populations within the one‐millimeter‐thick photic zone of a hot spring cyanobacterial mat. Appl Environm Microbiol 66: 1038 – 1049.
dc.identifier.citedreferenceRevsbech, N.P., and Ward, D.M. ( 1983 ) Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarum. Appl Environ Microbiol 45: 755 – 759.
dc.identifier.citedreferenceRickelt, L.F., Lichtenberg, M., Trampe, E.C.L., and Kühl, M. ( 2016 ) Fiber‐Optic Probes for Small‐Scale Measurements of Scalar Irradiance. Photochem Photobiol 92: 331 – 342.
dc.identifier.citedreferenceStolz, F., and Margulis, L. ( 1984 ) The stratified microbial community at Laguna Figueroa, Baja California, Mexico: A possible model for prephanerozoic laminated microbial communities preserved in cherts. Orig Life Evol Biosph 14: 671 – 679.
dc.identifier.citedreferenceStomp, M., Huisman, J., Stal, L.J., and Matthijs, H.C.P. ( 2007 ) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1: 271 – 282.
dc.identifier.citedreferencevan Gemerden, H. ( 1984 ) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 39: 289 – 294.
dc.identifier.citedreferenceVoorhies, A.A., Eisenlord, S.D., Marcus, D.N., Duhaime, M., Bopaiah, A., Biddanda, B.A., et al. ( 2016 ) Ecological and genetic interactions between cyanobacteria and viruses in a low‐oxygen mat community inferred through metagenomics and metatranscriptomics. Environ Microbiol 18: 358 – 371.
dc.identifier.citedreferenceWangpraseurt, D., Polerecky, L., Larkum, A.W.D., Ralph, P.J., Nielsen, D.A., Pernice, M., and Kühl, M. ( 2014 ) The in situ light microenvironment of corals. Limnol Oceanogr 59: 917 – 926.
dc.identifier.citedreferenceWeber, M., Faerber, P., Meyer, V., Lott, C., Eickert, G., Fabricius, K.E., and de Beer, D. ( 2007 ) In situ applications of a new diver‐operated motorized microsensor profiler. Env Sci Technol 41: 6210 – 6215.
dc.identifier.citedreferenceWieland, A., and Kühl, M. ( 2000 ) Irradiance and temperature regulation of oxygenic photosynthesis and O 2 consumption in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Mar Biol 137: 71 – 85.
dc.identifier.citedreferenceWieland, A., Zopfi, J., Benthien, M., and Kühl, M. ( 2005 ) Biogeochemistry of an iron‐rich hypersaline microbial mat (Camargue, France). Microb Ecol 49: 34 – 49.
dc.identifier.citedreferenceWieland, A., de Beer, D., van Dusschoten, D., Damgaard, L.R., Kühl, M., and van As, H. ( 2001 ) Fine‐scale measurement of diffusivity in a microbial mat with NMR imaging. Limnol Oceanogr 44: 248 – 259.
dc.identifier.citedreferenceZarikian, C.A.A., Swart, P.K., Gifford, J.A., and Blackwelder, P.L. ( 2005 ) Holocene paleohydrology of Little Salt Spring, Florida, based on ostracod assemblages and stable isotopes. Palaeogeogr Palaeoclimatol, Palaeoecol 225: 134 – 156.
dc.identifier.citedreferenceAnbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., et al. ( 2007 ) A Whiff of oxygen before the great oxidation event? Science 317: 1903 – 1906.
dc.identifier.citedreferenceBateson, M.M., and Ward, D.M. ( 1988 ) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54: 1738 – 1743.
dc.identifier.citedreferenceBerg, H.C. ( 1983 ) Random Walks in Biology. Princeton, New Jersey: Princeton University Press.
dc.identifier.citedreferenceBrune, D.C. ( 1989 ) Sulfur oxidation by phototrophic bacteria. BBA‐Bioenergetics 975: 189 – 221.
dc.identifier.citedreferenceCanfield, D.E. ( 1998 ) A new model for Proterozoic ocean chemistry. Nature 396: 450 – 453.
dc.identifier.citedreferenceCanfield, D.E. ( 2013 ) Oxygen: A Four Billion Year History Princeton: Princeton University Press
dc.identifier.citedreferenceCanfield, D.E., and Des Marais, D.J. ( 1991 ) Aerobic sulfate reduction in microbial mats. Science 251: 1471 – 1473.
dc.identifier.citedreferenceCanfield, D.E., and Teske, A. ( 1996 ) Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur‐isotope studies. Nature 382: 127 – 132.
dc.identifier.citedreferenceClausen, C.J., Cohen, A.D., Emiliani, C., Holman, J.A., and Stipp, J.J. ( 1979 ) Little Salt Spring, Florida: A unique underwater site. Science 203: 609 – 614.
dc.identifier.citedreferenceCroce, R., and van Amerongen, H. ( 2014 ) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10: 492 – 501.
dc.identifier.citedreferencede Beer, D., Schramm, A., Santegoeds, C.M., and Kühl, M. ( 1997 ) A nitrite microsensor for profiling environmental biofilms. Appl Environ Microbiol 63: 973 – 977.
dc.identifier.citedreferenceFalkowski, P.G., and Raven, J.A. ( 2007 ) Aquatic Photosynthesis ( 2nd edition ). Princeton University Press: Princeton, NJ, USA.
dc.identifier.citedreferenceFerris, M.J., Nold, S.C., Revsbech, N.P., and Ward, D.M. ( 1997 ) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl Environ Microbiol 63: 1367 – 1374.
dc.identifier.citedreferenceFindlay, A.J., Bennett, A.J., Hanson, T.E., and Luther, G.W. III, ( 2015 ) Light‐dependant sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Appl Environ Microbiol 81: 7560 – 7569.
dc.identifier.citedreferenceGieseke, A., de Beer, D., ( 2004 ) Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats. In Molecular Microbial Ecology Manual. Akkermans, A.D.L., and van Elsas, D. (eds.). Dordrecht (Nl): Kluwer, pp. 1581 – 1612.
dc.identifier.citedreferenceGlazer, A.N. ( 1985 ) Light harvesting by phycobilisomes. Ann Rev Biophys Biophys Chem 14: 47 – 77.
dc.identifier.citedreferenceHabicht, K., and Canfield, D.E. ( 1996 ) Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382: 342 – 343.
dc.identifier.citedreferenceHamilton, T.L., Bryant, D.A., and Macalady, J.L. ( 2016a ) The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans. Environm Microbiol 18: 325 – 340.
dc.identifier.citedreferenceHamilton, T.L., Welander, P., Albrecht, H.L., Fulton, J.M., Schaperdoth, I., Yang, E.S., et al. ( 2016b ) Microbial communities and organic biomarkers in a Proterozoic‐analog sinkhole environment. Geobiology: submitted.
dc.identifier.citedreferenceHarada, J., Saga, Y., Oh‐Oka, H., and Tamiaki, H. ( 2005 ) Different sensitivities to oxygen between two strains of the photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 with bacteriochlorophyll c and d. Photosynth Res 86: 137 – 143.
dc.identifier.citedreferenceHenkel, S., Kasten, S., Poulton, S.W., and Staubwasser, M. ( 2016 ) Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chem Geol 421: 93 – 102.
dc.identifier.citedreferenceHoehler, T.M., Albert, D.B., Alperin, M.J., Bebout, B., Martens, C.S., and Des Marais, D. ( 2002 ) Comparative ecology of H 2 cycling in sedimentary and phototrophic ecosystems. Ant V Leeuwenhoek 81: 575 – 585.
dc.identifier.citedreferenceImhoff, J.F. ( 2014 ) Biology of Green Sulfur Bacteria. Chichester: John Wiley & Sons,.
dc.identifier.citedreferenceJeroschewski, P., Steukart, C., and Kühl, M. ( 1996 ) An amperometric microsensor for the determination of H 2 S in aquatic environments. Anal Chem 68: 4351 – 4357.
dc.identifier.citedreferenceJørgensen, B.B., and Des Marais, D.J. ( 1988 ) Optical properties of benthic photosynthetic communities: Fiber‐optic studies of cyanobacterial mats. Limnol Oceanogr 33: 99 – 113.
dc.identifier.citedreferenceKlatt, J.M. ( 2015 ) Photosynthesis and sulfur oxidation in microbial mats, unravelling the role of versatile Cyanobacteria in ancient ocean analogues. In PhD thesis: University of Bremen.
dc.identifier.citedreferenceKnoll, A.H., Summons, R.E., Waldbauer, J.R., and Zumberge, J.E. ( 2007 ) The geological succession of primary producers in the oceans. In The Evolution of Primary Producers in the Sea. P., F., and Knoll, A.H. (eds). Boston: Academic Press, pp. 133 – 164.
dc.identifier.citedreferenceLevenspiel, O. ( 1972 ) Chemical Reaction Engineering. New York: John Wiley & sons.
dc.identifier.citedreferenceLiu, Z., Klatt, C.G., Ludwig, M., Rusch, D.B., Jensen, S.I., Kühl, M., et al. ( 2012 ) ‘ Candidatus Thermochlorobacter aerophilum:’ an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 6: 1869 – 1882.
dc.identifier.citedreferenceMcConnell, M.C., Koop, R., Vasil’ev, S., and Bruce, D. ( 2002 ) Regulation of the distribution of chlorophyll and phycobilin‐absorbed excitation energy in cyanobacteria. A structure‐based model for the light state transition. Plant Physiol 130: 1201 – 1212.
dc.identifier.citedreferenceMillero, F.J., Plese, T., and Fernandez, M. ( 1988 ) The dissociation of hydrogen sulfide in seawater. Limnol Oceanogr 33: 269 – 274.
dc.identifier.citedreferenceNichols, K.E., and Bogorad, L. ( 1962 ) Action Spectra Studies of Phycocyanin Formation in a Mutant of Cyanidium caldarium. Bot Gaz 124: 85 – 93.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.