Show simple item record

The aurorae of Uranus past equinox

dc.contributor.authorLamy, L.
dc.contributor.authorPrangé, R.
dc.contributor.authorHansen, K. C.
dc.contributor.authorTao, C.
dc.contributor.authorCowley, S. W. H.
dc.contributor.authorStallard, T. S.
dc.contributor.authorMelin, H.
dc.contributor.authorAchilleos, N.
dc.contributor.authorGuio, P.
dc.contributor.authorBadman, S. V.
dc.contributor.authorKim, T.
dc.contributor.authorPogorelov, N.
dc.date.accessioned2017-06-16T20:08:34Z
dc.date.available2018-06-01T13:51:00Zen
dc.date.issued2017-04
dc.identifier.citationLamy, L.; Prangé, R. ; Hansen, K. C.; Tao, C.; Cowley, S. W. H.; Stallard, T. S.; Melin, H.; Achilleos, N.; Guio, P.; Badman, S. V.; Kim, T.; Pogorelov, N. (2017). "The aurorae of Uranus past equinox." Journal of Geophysical Research: Space Physics 122(4): 3997-4008.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137248
dc.description.abstractThe aurorae of Uranus were recently detected in the far ultraviolet with the Hubble Space Telescope (HST) providing a new, so far unique, means to remotely study the asymmetric Uranian magnetosphere from Earth. We analyze here two new HST Uranus campaigns executed in September 2012 and November 2014 with different temporal coverage and under variable solar wind conditions numerically predicted by three different MHD codes. Overall, the HST images taken with the Space Telescope Imaging Spectrograph reveal auroral emissions in three pairs of successive images (one pair acquired in 2012 and two in 2014), hence 6 additional auroral detections in total, including the most intense Uranian aurorae ever seen with HST. The detected emissions occur close the expected arrival of interplanetary shocks. They appear as extended spots at southern latitudes, rotating with the planet. They radiate 5–24 kR and 1.3‐8.8 GW of ultraviolet emission from H2, last for tens of minutes and vary on timescales down to a few seconds. Fitting the 2014 observations with model auroral ovals constrains the longitude of the southern (northern) magnetic pole to 104 ± 26° (284 ± 26°) in the Uranian Longitude System. We suggest that the Uranian near‐equinoctial aurorae are pulsed cusp emissions possibly triggered by large‐scale magnetospheric compressions.Key PointsWe identify six new auroral detections of Uranus in post‐equinox HST observations of 2012 and 2014These emissions are bright extended southern spots corotating with the planet, consistent with pulsed cusp auroraeWe retrieved the longitude of magnetic poles by fitting the auroral emissions with model auroral ovals
dc.publisherACM Digital Library
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetospheres
dc.subject.otheracceleration processes
dc.subject.otherdynamics
dc.subject.otheraurorae
dc.titleThe aurorae of Uranus past equinox
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137248/1/jgra53382_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137248/2/jgra53382.pdf
dc.identifier.doi10.1002/2017JA023918
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMcNutt, R. L., Jr., et al. ( 1998 ), Simulation of the heliosphere: Model, J. Geophys. Res., 103, 1905 – 1912, doi: 10.1029/97JA02143.
dc.identifier.citedreferenceArridge, C. S., et al. ( 2011 ), Uranus Pathfinder: Exploring the origins and evolution of Ice Giant planets, Exper. Astron. Astrophys. Instrum. Methods, 113, 753 – 791, doi: 10.1007/s10686-011-9251-4.
dc.identifier.citedreferenceBarthélémy, M., et al. ( 2014 ), Dayglow and auroral emissions of Uranus in H 2 FUV bands, Icarus, 239, 160 – 167, doi: 10.1016/j.icarus.2014.05.035.
dc.identifier.citedreferenceBonfond, B., et al. ( 2011 ), Quasi‐periodic polar flares at Jupiter: A signature of pulsed dayside reconnections?, Geophys. Res. Lett., 38, L02104, doi: 10.1029/2010GL045981.
dc.identifier.citedreferenceBroadfoot, A. L., et al. ( 1986 ), Ultraviolet spectrometer observations of Uranus, Science, 233, 74 – 79, doi: 10.1126/science.233.4759.74.
dc.identifier.citedreferenceCowley, S. W. H. ( 2013 ), Response of Uranus’ auroras to solar wind compressions at equinox, J. Geophys. Res. Space Physics, 118, 2897 – 2902, doi: 10.1002/jgra.50323.
dc.identifier.citedreferenceFarrugia, C. J., et al. ( 1995 ), Reconnection‐associated auroral activity stimulated by two types of upstream dynamic pressure variations: Interplanetary magnetic field B z ∼0, B y <<0 case, J. Geophys. Res., 100, 21,753 – 21,772, doi: 10.1029/95JA01082.
dc.identifier.citedreferenceGustin, J., et al. ( 2012 ), Conversion from HST ACS and STIS auroral counts into brightness, precipitated power, and radiated power for H 2 giant planets, J. Geophys. Res., 117, A07316, doi: 10.1029/2012JA017607.
dc.identifier.citedreferenceHerbert, F. ( 2009 ), Aurora and magnetic field of Uranus, J. Geophys. Res., 114, A11206, doi: 10.1029/2009JA014394.
dc.identifier.citedreferenceHerbert, F., and B. R. Sandel ( 1994 ), The Uranian aurora and its relationship to the magnetosphere, J. Geophys. Res., 99, 4143 – 4160, doi: 10.1029/93JA02673.
dc.identifier.citedreferenceKim, T. K., et al. ( 2016 ), Modeling the solar wind at the Ulysses, Voyager, and New Horizons spacecraft, Astrophys. J., 32 ( 1 ), 72, doi: 10.3847/0004-637X/832/1/72.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceLallement, R., et al. ( 2010 ), The interstellar H flow: Updated analysis of SOHO/SWAN data, Twelfth Int. Sol. Wind Conf., 1216, 555 – 558, doi: 10.1063/1.3395925.
dc.identifier.citedreferenceLamy, L., et al. ( 2012 ), Earth‐based detection of Uranus’ aurorae, Geophys. Res. Lett., 39, L07105, doi: 10.1029/2012GL051312.
dc.identifier.citedreferenceLamy, L., et al. ( 2013 ), Multispectral simultaneous diagnosis of Saturn’s aurorae throughout a planetary rotation, J. Geophys. Res. Space Physics, 118, 4817 – 4843, doi: 10.1002/jgra.50404.
dc.identifier.citedreferenceMasters, A. ( 2014 ), Magnetic reconnection at Uranus’ magnetopause, J. Geophys. Res. Space Physics, 119, 5520 – 5538, doi: 10.1002/2014JA020077.
dc.identifier.citedreferenceNess, N. F., et al. ( 1986 ), Magnetic fields at Uranus, Science, 233, 85 – 89, doi: 10.1126/science.233.4759.85.
dc.identifier.citedreferencePogorelov, N. V., et al. ( 2014 ), MS‐FLUKSS and its application to modeling flows of partially ionized plasma in the heliosphere, in 2014 Annual Conference on Extreme Science and Engineering Discovery Environment, p. 22, ACM Digital Library, New York, doi: 10.1145/2616498.2616499.
dc.identifier.citedreferenceTao, C., et al. ( 2005 ), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959.
dc.identifier.citedreferenceVincent, M. B., et al. ( 2000 ), Mapping Jupiter’s latitudinal bands and great red spot using HST/WFPC2 far‐ultraviolet imaging, Icarus, 143, 189 – 204, doi: 10.1006/icar.1999.6232.
dc.identifier.citedreferenceWaite, J. H., Jr., et al. ( 1988 ), Superthermal electron processes in the upper atmosphere of Uranus—Aurora and electroglow, J. Geophys. Res., 93, 14,295 – 14,308, doi: 10.1029/JA093iA12p14295.
dc.identifier.citedreferenceWang, C., and J. D. Richardson ( 2001 ), Energy partition between solar wind protons and pickup ions in the distant heliosphere: A three‐fluid approach, J. Geophys. Res., 106, 29,401 – 29,408, doi: 10.1029/2001JA000190.
dc.identifier.citedreferenceWang, C., and J. D. Richardson ( 2003 ), Determination of the solar wind slowdown near solar maximum, J. Geophys. Res., 108 ( A2 ), 1058, doi: 10.1029/2002JA009322.
dc.identifier.citedreferenceZieger, B., and K. C. Hansen ( 2008 ), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107, doi: 10.1029/2008JA013046.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.