Show simple item record

Limited carbon and biodiversity coâ benefits for tropical forest mammals and birds

dc.contributor.authorBeaudrot, Lydia
dc.contributor.authorKroetz, Kailin
dc.contributor.authorAlvarez‐loayza, Patricia
dc.contributor.authorAmaral, Ieda
dc.contributor.authorBreuer, Thomas
dc.contributor.authorFletcher, Christine
dc.contributor.authorJansen, Patrick A.
dc.contributor.authorKenfack, David
dc.contributor.authorLima, Marcela Guimarães Moreira
dc.contributor.authorMarshall, Andrew R.
dc.contributor.authorMartin, Emanuel H.
dc.contributor.authorNdoundou‐hockemba, Mireille
dc.contributor.authorO’Brien, Timothy
dc.contributor.authorRazafimahaimodison, Jean Claude
dc.contributor.authorRomero‐saltos, Hugo
dc.contributor.authorRovero, Francesco
dc.contributor.authorRoy, Cisquet Hector
dc.contributor.authorSheil, Douglas
dc.contributor.authorSilva, Carlos E.F.
dc.contributor.authorSpironello, Wilson Roberto
dc.contributor.authorValencia, Renato
dc.contributor.authorZvoleff, Alex
dc.contributor.authorAhumada, Jorge
dc.contributor.authorAndelman, Sandy
dc.date.accessioned2017-06-16T20:08:46Z
dc.date.available2017-08-01T14:25:48Zen
dc.date.issued2016-06
dc.identifier.citationBeaudrot, Lydia; Kroetz, Kailin; Alvarez‐loayza, Patricia ; Amaral, Ieda; Breuer, Thomas; Fletcher, Christine; Jansen, Patrick A.; Kenfack, David; Lima, Marcela Guimarães Moreira ; Marshall, Andrew R.; Martin, Emanuel H.; Ndoundou‐hockemba, Mireille ; O’Brien, Timothy; Razafimahaimodison, Jean Claude; Romero‐saltos, Hugo ; Rovero, Francesco; Roy, Cisquet Hector; Sheil, Douglas; Silva, Carlos E.F.; Spironello, Wilson Roberto; Valencia, Renato; Zvoleff, Alex; Ahumada, Jorge; Andelman, Sandy (2016). "Limited carbon and biodiversity coâ benefits for tropical forest mammals and birds." Ecological Applications (4): 1098-1111.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/137258
dc.description.abstractThe conservation of tropical forest carbon stocks offers the opportunity to curb climate change by reducing greenhouse gas emissions from deforestation and simultaneously conserve biodiversity. However, there has been considerable debate about the extent to which carbon stock conservation will provide benefits to biodiversity in part because whether forests that contain high carbon density in their aboveground biomass also contain high animal diversity is unknown. Here, we empirically examined medium to large bodied groundâ dwelling mammal and bird (hereafter â wildlifeâ ) diversity and carbon stock levels within the tropics using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested whether tropical forests that stored more carbon contained higher wildlife species richness, taxonomic diversity, and trait diversity. We found that carbon stocks were not a significant predictor for any of these three measures of diversity, which suggests that benefits for wildlife diversity will not be maximized unless wildlife diversity is explicitly taken into account; prioritizing carbon stocks alone will not necessarily meet biodiversity conservation goals. We recommend conservation planning that considers both objectives because there is the potential for more wildlife diversity and carbon stock conservation to be achieved for the same total budget if both objectives are pursued in tandem rather than independently. Tropical forests with low elevation variability and low tree density supported significantly higher wildlife diversity. These tropical forest characteristics may provide more affordable proxies of wildlife diversity for future multiâ objective conservation planning when fine scale data on wildlife are lacking.
dc.publisher. R package version 1.9.13
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconservation planning
dc.subject.otherwildlife conservation
dc.subject.othertropical ecology assessment and monitoring network
dc.subject.otherREDD+
dc.subject.otherbiodiversity coâ benefit
dc.subject.othercamera trapping
dc.subject.othercarbon stocks
dc.titleLimited carbon and biodiversity coâ benefits for tropical forest mammals and birds
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137258/1/eap1291.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137258/2/eap1291-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137258/3/eap1291_am.pdf
dc.identifier.doi10.1890/15-0935
dc.identifier.sourceEcological Applications
dc.identifier.citedreferenceOksanen, J., F. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2013. vegan: community ecology package, in R. p. v. 2.0-7. http://CRAN.R-project.org/package=vegan.
dc.identifier.citedreferenceHurlbert, A. H., and W. Jetz. 2007. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proceedings of the National Academy of Sciences USA 104: 13384 â 13389.
dc.identifier.citedreferenceHutchinson, G. E. 1959. Homage to Santa Rosalia, or Why are there so many kinds of animals? American Naturalist 93: 145 â 159.
dc.identifier.citedreferenceImai, N., A. Tanaka, H. Samejima, J. B. Sugau, J. T. Pereira, J. Titin, Y. Kurniawan, and K. Kitayama. 2014. Tree community composition as an indicator in biodiversity monitoring of REDD. Forest Ecology and Management 313: 169 â 179.
dc.identifier.citedreferenceIPCC. 2014. Summary for policymakers. Cambridge University Press, New York, New York, USA.
dc.identifier.citedreferenceIUCN. 2014. The IUCN red list of threatened species. Version 2014.1.
dc.identifier.citedreferenceJansen, P. A., J. Ahumada, E. Fegraus, and E. O’Brien. 2014. TEAM: a standardised camera trap surey to monitor terrestrial vertebrate communities in tropical forests. Pages 263 â 270 in P. Meek, and P. Fleming, editors. Camera trapping: wildlife management and research. CISRO Publishing, Clayton, Australia.
dc.identifier.citedreferenceJarvis, A., H. I. Reuter, A. Nelson, and E. Guevara. 2008. Hole-filled SRTM for the globe. in C.-C. S. m. Database, editor. http://srtm.csi.cgiar.org
dc.identifier.citedreferenceJetz, W., H. Kreft, G. Ceballos, and J. Mutke. 2009. Global associations between terrestrial producer and vertebrate consumer diversity. Proceedings of the Royal Society B 276: 269 â 278.
dc.identifier.citedreferenceJones, K. E., J. Bielby, M. Cardillo, S. Fritz, J. O’Dell, C. D. L. Orme, K. Safi, et al. 2009. PanTHERIA: a speciesâ level database of life history, ecology and geography of extant and recently extinct mammals. Ecological Archives E090 â 184.
dc.identifier.citedreferenceKerr, J. T., and L. Packer. 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385: 252 â 254.
dc.identifier.citedreferenceLaliberte, E., and P. Legendre. 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299 â 305.
dc.identifier.citedreferenceLaliberte, E., and B. Shipley. 2011. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11.
dc.identifier.citedreferenceLaurance, W. F., et al. 2011. Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation 144: 548 â 557.
dc.identifier.citedreferenceMagurran, A. E. 1988. Ecological diversity and its measurements. Princeton University Press, Princeton, New Jersey, USA.
dc.identifier.citedreferenceWright, D. H. 1983. Speciesâ energy theory: an extension of speciesâ area theory. Oikos 41: 496 â 506.
dc.identifier.citedreferenceMarshall, A. J., L. Beaudrot, and H. Wittmer. 2014. Responses of primates and other frugivorous vertebrates to plant resource variability over space and time at Gunung Palung National Park. International Journal of Primatology 35: 1178 â 1201.
dc.identifier.citedreferenceMcCain, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86: 366 â 372.
dc.identifier.citedreferenceMcCarthy, D. P., et al. 2012. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338: 946 â 949.
dc.identifier.citedreferenceMitchard, E. T. A., T. R. Feldpausch, R. J. W. Brienen, G. Lopez-Gonzalez, A. Monteagudo, T. R. Baker, et al. 2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography 23: 935 â 946.
dc.identifier.citedreferenceNaidoo, R., A. Balmford, P. J. Ferraro, S. Polasky, T. H. Ricketts, and M. Rouget. 2006. Integrating economic costs into conservation planning. Trends in Ecology & Evolution 21: 681 â 687.
dc.identifier.citedreferenceNaidoo, R., A. Balmford, R. Costanza, B. Fisher, R. E. Green, B. Lehner, T. R. Malcolm, and T. H. Ricketts. 2008. Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences USA 105: 9495 â 9500.
dc.identifier.citedreferencePanfil, S. N., and C. A. Harvey. 2014. REDD+ and biodiversity conservation: approaches, experiences and opportunities for improved outcomes. Washington, D.C., USA.
dc.identifier.citedreferencePaoli, G. D., et al. 2010. Biodiversity conservation in the REDD. Carbon Balance and Management 5: 7 â 15.
dc.identifier.citedreferencePhelps, J., D. A. Friess, and E. L. Webb. 2012. Win-win REDD+ approaches belie carbon-biodiversity trade-offs. Biological Conservation 154: 53 â 60.
dc.identifier.citedreferencePlummer, M., and A. Stukalov. 2014. rjags: Bayesian graphical models using MCMC. in R. p. v. 3.13. http://mcmc-jags.sourceforge.net.
dc.identifier.citedreferenceR Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRahbek, C. 1995. The elevational gradient of species richness: a uniform pattern. Ecography 18: 200 â 205.
dc.identifier.citedreferenceRejouâ Mechain, M., et al. 2014. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences Discussion 11: 5711 â 5742.
dc.identifier.citedreferenceSchulenberg, T. 2014. The Cornell Lab of Ornithology neotropical birds. http://neotropical.birds.cornell.edu
dc.identifier.citedreferenceSiikamaki, J., and S. C. Newbold. 2012. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation. Ambio 41: 78 â 89.
dc.identifier.citedreferenceSlik, J. W. F., et al. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22: 1261 â 1271.
dc.identifier.citedreferenceSrivastava, D. S., and J. H. Lawton. 1998. Why more productive sites have more species: an experimental test of theory using tree-hole communities. American Naturalist 152: 510 â 529.
dc.identifier.citedreferenceStrassburg, B. B. N., et al. 2010. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conservation Letters 2010: 98 â 105.
dc.identifier.citedreferenceStrassburg, B. B. N., A. S. L. Rodrigues, M. Gusti, A. Balmford, S. Fritz, M. Obersteiner, R. K. Turner, and T. M. Brooks. 2012. Impact of incentives to reduce emissions from deforestation on global species extinctions. Nature Climate Change 3: 350 â 355.
dc.identifier.citedreferenceTEAM Network 2011a. TEAM network sampling design guidelines. Science and Knowledge Division, Conservation International, Arlington, Virginia, USA.
dc.identifier.citedreferenceTEAM Network. 2011b. TEAM network vegetation monitoring protocol. TEAM, Washington DC. http://www.teamnetwork.org/protocols
dc.identifier.citedreferenceTEAM Network. 2011c. Terrestrial vertebrate monitoring protocol. TEAM, Washington DC. http://www.teamnetwork.org/protocols
dc.identifier.citedreferenceTerborgh, J. 1977. Bird speciesâ diversity on an Andean elevational gradient. Ecology 58: 1007 â 1019.
dc.identifier.citedreferenceThomas, C. D., B. J. Anderson, A. Moilanen, F. Eigenbrod, A. Heinemeyer, T. Quaife, D. B. Roy, S. Gillings, P. R. Armsworth, and K. J. Gaston. 2013. Reconciling biodiversity and carbon conservation. Ecology Letters 16: 39 â 47.
dc.identifier.citedreferenceVenter, O., W. F. Laurance, T. Iwamura, K. A. Wilson, R. A. Fuller, and H. P. Possingham. 2009. Harnessing carbon payments to protect biodiversity. Science 326: 1368 â 1368.
dc.identifier.citedreferenceWendland, K. J., M. Honzak, R. Portela, B. Vitale, S. Rubinoff, and J. Randrianarisoa. 2010. Targeting and implementing payments for ecosystem services: opportunities for bundling biodiversity conservation with carbon and water services in Madagascar. Ecological Economics 69: 2093 â 2107.
dc.identifier.citedreferenceWhite, H. 1980. A heteroskedasticityâ consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society 817 â 833.
dc.identifier.citedreferenceWright, S. J. 2003. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology Evolution and Systematics 6: 73 â 86.
dc.identifier.citedreferenceWright, S. J. 2005. Tropical forests in a changing environment. Trends in Ecology & Evolution 20: 553 â 560.
dc.identifier.citedreferenceZanne, A. E., G. Lopezâ Gonzalez, D. A. Coomes, J. Illic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. Data from: towards a worldwide wood economics spectrum, Dryad Digital Repository.
dc.identifier.citedreferenceAhumada, J. A., et al. 2011. Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philosophical Transactions of the Royal Society B 366: 2703 â 2711.
dc.identifier.citedreferenceAhumada, J. A., J. Hurtado, and D. Lizcano. 2013. Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS ONE 8 (9): e73707.
dc.identifier.citedreferenceAnderson, B. J., P. R. Armsworth, F. Eigenbrod, C. D. Thomas, S. Gillings, A. Heinemeyer, D. B. Roy, and K. J. Gaston. 2009. Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology 46: 888 â 896.
dc.identifier.citedreferenceBanin, L., et al. 2014. Tropical forest wood production: a cross-continental comparison. Journal of Ecology 102: 1025 â 1037.
dc.identifier.citedreferenceBarton, K. 2013. MuMIn: multi-model inference.. R package version 1.9.13. https://CRAN.R-project.org/package=MuMIn
dc.identifier.citedreferenceBeck, J., et al. 2012. What’s on the horizon for macroecology? Ecography 35: 673 â 683.
dc.identifier.citedreferenceBurnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach, Second edition.. Springer, New York, New York, USA.
dc.identifier.citedreferenceCardinale, B. J., et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59 â 67.
dc.identifier.citedreferenceCavanaugh, K. C., et al. 2014. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography 23: 563 â 573.
dc.identifier.citedreferenceChave, J., et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87 â 99.
dc.identifier.citedreferenceChave, J., et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20: 3177 â 3190.
dc.identifier.citedreferenceConvention on Biological Diversity. 2010. Strategic plan for biodiversity. Tenth Meeting of the Conference of the Parties, 18â 29 October, 2010, Nagoya, Aichi Prefecture, Japan. http://www.cbd.int/sp/targets
dc.identifier.citedreferenceDeFries, R., F. Rovero, P. Wright, J. Ahumada, S. Andelman, K. Brandon, J. Dempewolf, A. Hansen, J. Hewson, and J. G. Liu. 2010. From plot to landscape scale: linking tropical biodiversity measurements across spatial scales. Frontiers in Ecology and the Environment 8: 153 â 160.
dc.identifier.citedreferenceDorazio, R. M., J. A. Royle, B. Soderstrom, and A. Glimskar. 2006. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87: 842 â 854.
dc.identifier.citedreferenceDunning, J. 2008. CRC handbook of avian body masses, Second edition. CRC Press, Boca Raton, Florida, USA.
dc.identifier.citedreferenceEliasch, J. 2008. Climate change: financing global forests: the Eliasch review. Earthscan, London, UK.
dc.identifier.citedreferenceFAO/UNDP/UNEP. 2010. UN-REDD Programme Secretariat, Switzerland, www.un-redd.org.
dc.identifier.citedreferenceGardner, T. A., et al. 2012. A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation 154: 61 â 71.
dc.identifier.citedreferenceGaston, K. J. 2000. Pattern and process in macroecology. Blackwell Science, Malden, Massachusetts, USA.
dc.identifier.citedreferenceGhazoul, J., and D. Sheil. 2010. Tropical rain forests: ecology diversity and conservation. Oxford University Press, Oxford, UK.
dc.identifier.citedreferenceGouveia, S. F., F. Villalobos, R. Dobrovolski, R. Beltrao-Mendes, and S. F. Ferrari. 2014. Forest structure drives global diversity of primates. Journal of Animal Ecology 83: 1523 â 1530.
dc.identifier.citedreferenceHansen, M. C., et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850 â 853.
dc.identifier.citedreferenceHijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965 â 1978.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.