Show simple item record

Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations

dc.contributor.authorGe, Cui
dc.contributor.authorWang, Jun
dc.contributor.authorReid, Jeffrey S.
dc.contributor.authorPosselt, Derek J.
dc.contributor.authorXian, Peng
dc.contributor.authorHyer, Edward
dc.date.accessioned2017-06-16T20:17:04Z
dc.date.available2018-07-09T17:42:25Zen
dc.date.issued2017-05-27
dc.identifier.citationGe, Cui; Wang, Jun; Reid, Jeffrey S.; Posselt, Derek J.; Xian, Peng; Hyer, Edward (2017). "Mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations." Journal of Geophysical Research: Atmospheres 122(10): 5380-5398.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/137624
dc.description.abstractAtmospheric transport of smoke from equatorial Southeast Asian Maritime Continent (Indonesia, Singapore, and Malaysia) to the Philippines was recently verified by the first‐ever measurement of aerosol composition in the region of the Sulu Sea from a research vessel named Vasco. However, numerical modeling of such transport can have large uncertainties due to the lack of observations for parameterization schemes and for describing fire emission and meteorology in this region. These uncertainties are analyzed here, for the first time, with an ensemble of 24 Weather Research and Forecasting model with Chemistry (WRF‐Chem) simulations. The ensemble reproduces the time series of observed surface nonsea‐salt PM2.5 concentrations observed from the Vasco vessel during 17–30 September 2011 and overall agrees with satellite (Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Moderate Resolution Imaging Spectroradiometer (MODIS)) and Aerosol Robotic Network (AERONET) data. The difference of meteorology between National Centers for Environmental Prediction (NCEP’s) Final (FNL) and European Center for Medium range Weather Forecasting (ECMWF’s) ERA renders the biggest spread in the ensemble (up to 20 μg m−3 or 200% in surface PM2.5), with FNL showing systematically superior results. The second biggest uncertainty is from fire emissions; the 2 day maximum Fire Locating and Modelling of Burning Emissions (FLAMBE) emission is superior than the instantaneous one. While Grell‐Devenyi (G3) and Betts‐Miller‐Janjić cumulus schemes only produce a difference of 3 μg m−3 of surface PM2.5 over the Sulu Sea, the ensemble mean agrees best with Climate Prediction Center (CPC) MORPHing (CMORPH)’s spatial distribution of precipitation. Simulation with FNL‐G3, 2 day maximum FLAMBE, and 800 m injection height outperforms other ensemble members. Finally, the global transport model (Navy Aerosol Analysis and Prediction System (NAAPS)) outperforms all WRF‐Chem simulations in describing smoke transport on 20 September 2011, suggesting the challenges to model tropical meteorology at mesoscale and finer scale.Plain Language SummaryIt is well known that smoke particles from fires in Indonesia, Singapore, and Malaysia can affect each other’s air quality. Less known and surely not well documented is the transport of smoke particles from these countries to the Philippines. Here we use the first‐ever measurements took nearby the coastal of the Philippines to analyze an ensemble of 24 WRF‐Chem simulations of smoke transport. Because of persistent cloud cover and the complexity of meteorology, mesoscale modeling of smoke transport in these regions normally has large uncertainties. We show these uncertainties are caused first by meteorology and then by fire emissions. We further show that models with finer resolution not necessarily produce better results.Key PointsFirst mesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the PhilippinesEnsemble analysis of modeling uncertainties with first‐ever measurement of aerosol composition data in the region of the Sulu SeaMeteorological initial and boundary conditions, not cumulus parametrization and fire emission, have the largest uncertainty in the simulation
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersmoke in maritime content
dc.subject.othersmoke transport
dc.subject.otherensemble modeling
dc.subject.othercumulus schemes
dc.subject.otherthe Philippines
dc.titleMesoscale modeling of smoke transport from equatorial Southeast Asian Maritime Continent to the Philippines: First comparison of ensemble analysis with in situ observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137624/1/jgrd53809_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137624/2/jgrd53809.pdf
dc.identifier.doi10.1002/2016JD026241
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceReid, J. S., et al. ( 2009 ), Global monitoring and forecasting of biomass‐burning smoke: Description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) program, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2, 144 – 162, doi: 10.1109/jstars.2009.2027443.
dc.identifier.citedreferenceLynch, P., et al. ( 2016 ), An 11‐year global gridded aerosol optical thickness reanalysis (v1. 0) for atmospheric and climate sciences, Geosci. Model Dev., 9, 1489.
dc.identifier.citedreferenceMallet, V., and B. Sportisse ( 2006 ), Uncertainty in a chemistry‐transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111, D01302, doi: 10.1029/2005JD006149.
dc.identifier.citedreferenceMcKeen, S., et al. ( 2007 ), Evaluation of several PM 2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study, J. Geophys. Res., 112, D10S20, doi: 10.1029/2006JD007608.
dc.identifier.citedreferenceNational Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce ( 2000 ), NCEP FNL operational model global tropospheric analyses, April 1997 through June 2007, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo., doi: 10.5065/D6FB50XD.
dc.identifier.citedreferenceNasrollahi, N., A. AghaKouchak, J. Li, X. Gao, K. Hsu, and S. Sorooshian ( 2012 ), Assessing the impacts of different WRF precipitation physics in hurricane simulations, Weather Forecasting, 27, 1003 – 1016.
dc.identifier.citedreferenceO’Neill, N. T. ( 2003 ), Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res., 108 ( D17 ), 4559, doi: 10.1029/2002JD002975.
dc.identifier.citedreferenceOlivier, J. G., Bouwman, A., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Zandveld, P., and Haverlag, J. ( 1996 ), Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone‐depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 degree × 1 degree grid.
dc.identifier.citedreferenceReid, J., P. Xian, E. Hyer, M. Flatau, E. Ramirez, F. Turk, C. Sampson, C. Zhang, E. Fukada, and E. Maloney ( 2012 ), Multi‐scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent, Atmos. Chem. Phys., 12, 2117 – 2147.
dc.identifier.citedreferenceReid, J. S., et al. ( 2013 ), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403 – 468, doi: 10.1016/j.atmosres.2012.06.005.
dc.identifier.citedreferenceReid, J. S., et al. ( 2015 ), Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: The scale‐dependent role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools, Atmos. Chem. Phys., 15, 1745 – 1768, doi: 10.5194/acp‐15‐1745‐2015.
dc.identifier.citedreferenceRosenfeld, D., and W. Woodley ( 2000 ), Deep convective clouds with sustained supercooled liquid water down to −37.5°C, Nature, 405, 440 – 442, doi: 10.1038/35013030.
dc.identifier.citedreferenceRubin, J. I., J. S. Reid, J. A. Hansen, J. L. Anderson, T. J. Hoar, C. A. Reynolds, W. R. Sessions, and D. L. Westphal ( 2016 ), Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting, Atmos. Chem. Phys., 16, 3927.
dc.identifier.citedreferenceSchell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel ( 2001 ), Modeling the formation of secondary organic aerosol within a comprehensive air quality model system, J. Geophys. Res., 106, 28,275 – 28,293, doi: 10.1029/2001JD000384.
dc.identifier.citedreferenceShi, Y., J. Zhang, J. S. Reid, B. Liu, and E. J. Hyer ( 2014 ), Critical evaluation of cloud contamination in the MISR aerosol products using MODIS cloud mask products, Atmos. Meas. Tech., 7, 1791 – 1801, doi: 10.5194/amt-7-1791-2014.
dc.identifier.citedreferenceTaylor, K. E. ( 2001 ), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106 ( D7 ), 7183 – 7192.
dc.identifier.citedreferenceVan Der Werf, G. R., J. T. Randerson, L. Giglio, N. Gobron, and A. Dolman ( 2008 ), Climate controls on the variability of fires in the tropics and subtropics, Global Biogeochem. Cycles, 22, GB3028, doi: 10.1029/2007GB003122.
dc.identifier.citedreferenceWang, J., C. Ge, Z. Yang, E. J. Hyer, J. S. Reid, B.‐N. Chew, M. Mahmud, Y. Zhang, and M. Zhang ( 2013 ), Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography, Atmos. Res., 122, 486 – 503, doi: 10.1016/j.atmosres.2012.05.009.
dc.identifier.citedreferenceWiedinmyer, C., S. Akagi, R. J. Yokelson, L. Emmons, J. Al‐Saadi, J. Orlando, and A. Soja ( 2011 ), The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625.
dc.identifier.citedreferenceWinker, D. M., et al. ( 2010 ), The CALIPSO mission: A global 3D view of aerosols and clouds, Bull. Am. Meteorol. Soc., 91, 1211 – 1229, doi: 10.1175/2010BAMS3009.1.
dc.identifier.citedreferenceXian, P., J. S. Reid, J. F. Turk, E. J. Hyer, and D. L. Westphal ( 2009 ), Impact of modeled versus satellite measured tropical precipitation on regional smoke optical thickness in an aerosol transport model, Geophys. Res. Lett., 36, L16805, doi: 10.1029/2009GL038823.
dc.identifier.citedreferenceXian, P., J. S. Reid, S. A. Atwood, R. S. Johnson, E. J. Hyer, D. L. Westphal, and W. Sessions ( 2013 ), Smoke aerosol transport patterns over the Maritime Continent, Atmos. Res., 122, 469 – 485.
dc.identifier.citedreferenceYang, Q., W. Gustafson Jr., J. D. Fast, H. Wang, R. C. Easter, H. Morrison, Y.‐N. Lee, E. G. Chapman, S. Spak, and M. Mena‐Carrasco ( 2011 ), Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS‐REx using WRF‐Chem, Atmos. Chem. Phys., 11, 11,951 – 11,975.
dc.identifier.citedreferenceZhang, J., and J. S. Reid ( 2006 ), MODIS aerosol product analysis for data assimilation: Assessment of level 2 aerosol optical thickness retrievals, J. Geophys. Res., 111, 22207, doi: 10.1029/2005JD006898.
dc.identifier.citedreferenceZhang, Q., D. G. Streets, G. R. Carmichael, K. He, H. Huo, A. Kannari, Z. Klimont, I. Park, S. Reddy, and J. Fu ( 2009 ), Asian emissions in 2006 for the NASA INTEX‐B mission, Atmos. Chem. Phys., 9, 5131 – 5153.
dc.identifier.citedreferenceAckermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar ( 1998 ), Modal aerosol dynamics model for Europe: Development and first applications, Atmos. Environ., 32, 2981 – 2999, doi: 10.1016/S1352‐2310.
dc.identifier.citedreferenceAtwood, S. A., J. S. Reid, S. M. Kreidenweis, E. Y. Liya, S. V. Salinas, B. N. Chew, and R. Balasubramanian ( 2013 ), Analysis of source regions for smoke events in Singapore for the 2009 El Niño burning season, Atmos. Environ., 78, 219 – 230.
dc.identifier.citedreferenceCampbell, J. R., J. S. Reid, D. L. Westphal, J. Zhang, J. L. Tackett, B. N. Chew, E. J. Welton, A. Shimizu, N. Sugimoto, and K. Aoki ( 2013 ), Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP, Atmos. Res., 122, 520 – 543.
dc.identifier.citedreferenceCampbell, J. R., et al. ( 2016 ), Applying advanced ground‐based remote sensing in the Southeast Asian Maritime Continent to characterize regional proficiencies in smoke transport modeling, J. Appl. Meteorol. Climatol., 55, 3 – 22, doi: 10.1175/jamc‐d‐15‐0083.1.
dc.identifier.citedreferenceCarvalho, D., A. Rocha, M. Gómez‐Gesteira, and C. S. Santos ( 2014 ), WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal, Appl. Energy, 117, 116 – 126.
dc.identifier.citedreferenceChew, B. N., J. R. Campbell, J. S. Reid, D. M. Giles, E. J. Welton, S. V. Salinas, and S. C. Liew ( 2011 ), Tropical cirrus cloud contamination in sun photometer data, Atmos. Environ., 45, 6724 – 6731.
dc.identifier.citedreferenceCooke, W., C. Liousse, H. Cachier, and J. Feichter ( 1999 ), Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104, 22,137 – 22,162, doi: 10.1029/1999JD900187.
dc.identifier.citedreferenceCrutzen, P. J., and M. O. Andreae ( 1990 ), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669 – 1678.
dc.identifier.citedreferenceDee, D., and S. Uppala ( 2009 ), Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis, Q. J. R. Meteorol. Soc., 135, 1830 – 1841.
dc.identifier.citedreferenceDee, D., S. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. Balmaseda, G. Balsamo, and P. Bauer ( 2011 ), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137, 553 – 597.
dc.identifier.citedreferenceDelle Monache, L., and R. B. Stull ( 2003 ), An ensemble air‐quality forecast over western Europe during an ozone episode, Atmos. Environ., 37, 3469 – 3474, doi: 10.1016/S1352‐2310(03)00475‐8.
dc.identifier.citedreferenceDjalalova, I., J. Wilczak, S. McKeen, G. Grell, S. Peckham, M. Pagowski, L. DelleMonache, J. McQueen, Y. Tang, and P. Lee ( 2010 ), Ensemble and bias‐correction techniques for air quality model forecasts of surface O 3 and PM 2.5 during the TEXAQS‐II experiment of 2006, Atmos. Environ., 44 ( 4 ), 455 – 467.
dc.identifier.citedreferenceFast, J. D., W. I. Gustafson, R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham ( 2006 ), Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology‐chemistry‐aerosol model, J. Geophys. Res., 111, D21305, doi: 10.1029/2005JD006721.
dc.identifier.citedreferenceForkel, R., A. Balzarini, R. Baró, R. Bianconi, G. Curci, P. Jiménez‐Guerrero, M. Hirtl, L. Honzak, C. Lorenz, and U. Im ( 2015 ), Analysis of the WRF‐Chem contributions to AQMEII phase 2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions, Atmos. Environ., 115, 630 – 645.
dc.identifier.citedreferenceGalmarini, S., et al. ( 2004a ), Ensemble dispersion forecasting—Part II: Application and evaluation, Atmos. Environ., 38, 4619 – 4632, doi: 10.1016/j.atmosenv.2004.05.031.
dc.identifier.citedreferenceGalmarini, S., et al. ( 2004b ), Ensemble dispersion forecasting—Part I: Concept, approach and indicators, Atmos. Environ., 38, 4607 – 4617, doi: 10.1016/j.atmosenv.2004.05.030.
dc.identifier.citedreferenceGe, C., J. Wang, and J. S. Reid ( 2014 ), Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Coupling of smoke direct radiative effect below and above the low‐level clouds, Atmos. Chem. Phys., 14, 159 – 174, doi: 10.5194/acp‐14‐159‐2014.
dc.identifier.citedreferenceGhan, S. J., N. S. Laulainen, R. C. Easter, R. Wagener, S. Nemesure, E. G. Chapman, Y. Zhang, and L. R. Leung ( 2001 ), Evaluation of aerosol direct radiative forcing in MIRAGE, J. Geophys. Res., 106, 5295 – 5316.
dc.identifier.citedreferenceGrell, G., and A. Baklanov ( 2011 ), Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches, Atmos. Environ., 45, 6845 – 6851.
dc.identifier.citedreferenceGrell, G. A., and Dévényi, D. ( 2002 ), A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys. Res. Lett., 29 ( 14 ), 1693, doi: 10.1029/2002GL015311.
dc.identifier.citedreferenceGrell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder ( 2005 ), Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957 – 6975, doi: 10.1016/j.atmosenv.2005.04.027.
dc.identifier.citedreferenceGuenther, A., C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, and W. McKay ( 1995 ), A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873 – 8892, doi: 10.1029/94JD02950.
dc.identifier.citedreferenceHogan, T. F., et al. ( 2014 ), The Navy Global Environmental Model, Oceanography, 27 ( 3 ), 116 – 125, doi: 10.5670/oceanog.2014.73.
dc.identifier.citedreferenceHolben, B. N., T. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, and T. Nakajima ( 1998 ), AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1 – 16.
dc.identifier.citedreferenceHou, A., R. Kakar, S. Neeck, A. Azarbarzin, C. Kummerow, M. Kojima, R. Oki, K. Nakamura, and T. Iguchi ( 2014 ), The global precipitation measurement mission, Bull. Am. Meteorol. Soc., 95, 701 – 722, doi: 10.1175/BAMS‐D‐13‐00164.1.
dc.identifier.citedreferenceHyer, E. J., and B. N. Chew ( 2010 ), Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia, Atmos. Environ., 44, 1422 – 1427.
dc.identifier.citedreferenceHyer, E. J., J. S. Reid, and J. Zhang ( 2011 ), An over‐land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals, Atmos. Meas. Tech., 4, 379 – 408, doi: 10.5194/amt-4-379-2011.
dc.identifier.citedreferenceHyer, E. J., J. S. Reid, E. M. Prins, J. P. Hoffman, C. C. Schmidt, J. I. Miettinen, and L. Giglio ( 2013 ), Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations, Atmos. Res., 122, 504 – 519.
dc.identifier.citedreferenceJanjic, Z. I. ( 1994 ), The step‐mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122, 927 – 945.
dc.identifier.citedreferenceJoyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie ( 2004 ), CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, J. Hydrometeorol., 5, 487 – 503.
dc.identifier.citedreferenceJustice, C., L. Giglio, S. Korontzi, J. Owens, J. Morisette, D. Roy, J. Descloitres, S. Alleaume, F. Petitcolin, and Y. Kaufman ( 2002 ), The MODIS fire products, Remote Sens. Environ., 83, 244 – 262.
dc.identifier.citedreferenceKalnay, E. ( 2002 ) Atmospheric Modeling, Data Assimilation and Predictability, pp. 205 – 260, Cambridge Univ. Press, New York.
dc.identifier.citedreferenceKaufman, Y., C. Ichoku, L. Giglio, S. Korontzi, D. Chu, W. Hao, R.‐R. Li, and C. Justice ( 2003 ), Fire and smoke observed from the Earth Observing system MODIS instrument—Products, validation, and operational use, Int. J. Remote Sens., 24, 1765 – 1781.
dc.identifier.citedreferenceLin, Y.‐L., R. D. Farley, and H. D. Orville ( 1983 ), Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065 – 1092.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.