Show simple item record

Stoichiometric Control of Electrocatalytic Amorphous Nickel Phosphide to Increase Hydrogen Evolution Reaction Activity and Stability in Acidic Medium

dc.contributor.authorWasalat hanthri, Ruwani N.
dc.contributor.authorJeffrey, Samuel
dc.contributor.authorSu, Naheya
dc.contributor.authorSun, Kai
dc.contributor.authorGiolando, Dean M.
dc.date.accessioned2017-10-05T18:17:34Z
dc.date.available2018-12-03T15:34:02Zen
dc.date.issued2017-09-11
dc.identifier.citationWasalat hanthri, Ruwani N. ; Jeffrey, Samuel; Su, Naheya; Sun, Kai; Giolando, Dean M. (2017). "Stoichiometric Control of Electrocatalytic Amorphous Nickel Phosphide to Increase Hydrogen Evolution Reaction Activity and Stability in Acidic Medium." ChemistrySelect 2(26): 8020-8027.
dc.identifier.issn2365-6549
dc.identifier.issn2365-6549
dc.identifier.urihttps://hdl.handle.net/2027.42/138271
dc.description.abstractThis work describes the electrocatalysis of amorphous nickel phosphide (Niâ P) electrodeposited onto copper metal foil, for its use as a nonâ noble metal catalyst for the hydrogen evolution reaction (HER) in 0.5 M H2SO4. Although electrodeposition offers many advantages over conventional high temperature and high pressure fabrication techniques, there are very few reports on the preparation of Niâ P electrocatalysts via electrodeposition. This Niâ P electrocatalyst exhibits good activity in acidic medium, with a potential of â 222 mV to achieve 10 mA cmâ 2 cathodic current density. This potential is comparable to that of electrodeposited Pt black (â 104 mV), and much better than that of electrodeposited Ni (â 480 mV). An unusual longâ term stability in acidic medium was demonstrated by the â 222 mV potential remaining constant after 5000 cyclic voltammetric sweeps in 0.5 M H2SO4. Importantly, the stoichiometry of the nickel phosphide films can be easily varied from an atomic % of phosphorus from 15 % to as high as 24 % by modifications to the electrodeposition conditions. Such a high phosphorous loading is greater than is generally reported with electrodeposited Niâ P materials. In addition, we observed Niâ P films electrodeposited at lower temperatures (â ¼ 3 °C) result in higher phosphorous loading, which gives rise to enhanced stability as well as activity. Electrodeposited amorphous Niâ P can therefore be used as an active, stable and Earthâ abundant metal catalyst for the HER in acidic electrolytes.Long live Niâ P: Even after 5000 cyclic voltammetric sweeps, electrodeposited nickel phosphide shows high activity and stability towards hydrogen evolution reaction (HER) in acidic electrolyte. Modifications to the deposition conditions could easily elevate the phosphorus loading on the film up to circa 24 at%, which provided enhanced activity.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhydrogen evolution reaction
dc.subject.otherelectrodeposition
dc.subject.otherelectrocatalyst
dc.subject.otheracid stable nickel phosphide
dc.titleStoichiometric Control of Electrocatalytic Amorphous Nickel Phosphide to Increase Hydrogen Evolution Reaction Activity and Stability in Acidic Medium
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138271/1/slct201701755_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138271/2/slct201701755.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138271/3/slct201701755-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/slct.201701755
dc.identifier.sourceChemistrySelect
dc.identifier.citedreferenceT. Burchardt, Int. J. Hydrogen Energy 2002, 27, 323 - 328;
dc.identifier.citedreferenceD. Li, K. Senevirathne, L. Aquilina, S. L. Brock, Inorg. Chem. 2015, 54, 7968 - 7975.
dc.identifier.citedreference 
dc.identifier.citedreferenceL. Feng, H. Vrubel, M. Bensimon, X. Hu, PCCP 2014, 16, 5917 - 5921;
dc.identifier.citedreferenceN. Jiang, B. You, M. Sheng, Y. Sun, ChemCatChem 2016, 8, 106 - 112;
dc.identifier.citedreferenceA. Han, S. Jin, H. Chen, H. Ji, Z. Sun, P. Du, J. Mater. Chem. A 2015, 3, 1941 - 1946;
dc.identifier.citedreferenceY. Pan, Y. Chen, Y. Lin, P. Cui, K. Sun, Y. Liu, C. Liu, J. Mater. Chem. A 2016, 4, 14675 - 14686.
dc.identifier.citedreferenceX. Wang, Y. V. Kolenâ ²ko, X.-Q. Bao, K. Kovnir, L. Liu, Angew. Chem. Int. Ed. 2015, 54, 8188 - 8192; Angew. Chem. 2015, 127, 8306 â 8310.
dc.identifier.citedreferenceI. Dharmadasa, J. Haigh, J. Electrochem. Soc. 2006, 153, G 47 -G 52.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Burchardt, V. Hansen, T. VÃ¥land, Electrochim. Acta 2001, 46, 2761 - 2766.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. R. J. Kucernak, V. N. Naranammalpuram Sundaram, J. Mater. Chem. A 2014, 2, 17435 - 17445;
dc.identifier.citedreferenceM. V. Gerasimov, Y. N. Simirskii, Metallurgist 2008, 52, 477 - 481.
dc.identifier.citedreferenceB. Elsener, M. Crobu, M. A. Scorciapino, A. Rossi, J. Appl. Electrochem. 2008, 38, 1053.
dc.identifier.citedreferenceA. Brenner, G. E. Riddell, J. Res. NBS 1946, 37, 31 - 34.
dc.identifier.citedreferenceL. Jin, H. Xia, Z. Huang, C. Lv, J. Wang, M. G. Humphrey, C. Zhang, J. Mater. Chem. A 2016, 4, 10925 - 10932.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 2015, 3, 1656 - 1665;
dc.identifier.citedreferenceM. C. Biesinger, B. P. Payne, L. W. Lau, A. Gerson, R. S. C. Smart, Surf. Interface Anal. 2009, 41, 324 - 332;
dc.identifier.citedreferenceP. W. Menezes, A. Indra, C. Das, C. Walter, C. Göbel, V. Gutkin, D. Schmeiβer, M. Driess, ACS Catal. 2016, 103 - 109;
dc.identifier.citedreferenceJ. A. Cecilia, A. Infantes-Molina, E. Rodríguez-Castellón, A. Jiménez-López, J. Catal. 2009, 263, 4 - 15.
dc.identifier.citedreferenceJ. F. Callejas, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Chem. Mater. 2016, 28, 6017 - 6044.
dc.identifier.citedreferenceX. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148 - 5180.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Li, J. Li, X. Zhou, Z. Xia, W. Gao, Y. Ma, Y. Qu, ACS Appl. Mater. Interfaces 2016, 8, 10826 - 10834;
dc.identifier.citedreferenceN. Bai, Q. Li, D. Mao, D. Li, H. Dong, ACS Applied Materials & Interfaces 2016, 8, 29400 - 29407.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267 - 9270;
dc.identifier.citedreferenceP. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624 - 2629;
dc.identifier.citedreferenceA. B. Laursen, K. R. Patraju, M. J. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt, G. C. Dismukes, Energy Environ. Sci. 2015, 8, 1027 - 1034;
dc.identifier.citedreferenceM. A. Abbas, J. H. Bang, Chem. Mater. 2015, 27, 7218 - 7235.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. Xie, P. He, L. Du, F. Dong, K. Dai, T. Zhang, Electrochim. Acta 2013, 88, 390 - 394;
dc.identifier.citedreferenceK. Ngamlerdpokin, N. Tantavichet, Int. J. Hydrogen Energy 2014, 39, 2505 - 2515;
dc.identifier.citedreferenceC. Lupi, A. Dellâ ²Era, M. Pasquali, Int. J. Hydrogen Energy 2009, 34, 2101 - 2106;
dc.identifier.citedreferenceP. Ragunathan, S. K. Mitra, M. G. Nayar, Int. J. Hydrogen Energy 1981, 6, 487 - 496;
dc.identifier.citedreferenceN. Jiang, L. Bogoev, M. Popova, S. Gul, J. Yano, Y. Sun, J. Mater. Chem. A 2014, 2, 19407 - 19414;
dc.identifier.citedreferenceM.-R. Gao, Z.-Y. Lin, T.-T. Zhuang, J. Jiang, Y.-F. Xu, Y.-R. Zheng, S.-H. Yu, J. Mater. Chem. 2012, 22, 13662 - 13668;
dc.identifier.citedreferenceM. Ledendecker, S. Krickâ Calderón, C. Papp, H.-P. Steinrück, M. Antonietti, M. Shalom, Angew. Chem. Int. Ed. 2015, 54, 12361 - 12365; Angew. Chem. 2015, 127, 12538 â 12542;
dc.identifier.citedreferenceX. Zhou, Y. Liu, H. Ju, B. Pan, J. Zhu, T. Ding, C. Wang, Q. Yang, Chem. Mater. 2016, 28, 1838 - 1846;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.