Show simple item record

Emerging Biomarkers of Illness Severity: Urinary Metabolites Associated with Sepsis and Necrotizing Methicillin‐Resistant Staphylococcus aureus Pneumonia

dc.contributor.authorAmbroggio, Lilliam
dc.contributor.authorFlorin, Todd A.
dc.contributor.authorShah, Samir S.
dc.contributor.authorRuddy, Richard
dc.contributor.authorYeomans, Larisa
dc.contributor.authorTrexel, Julie
dc.contributor.authorStringer, Kathleen A.
dc.date.accessioned2017-10-05T18:20:25Z
dc.date.available2018-12-03T15:34:04Zen
dc.date.issued2017-09
dc.identifier.citationAmbroggio, Lilliam; Florin, Todd A.; Shah, Samir S.; Ruddy, Richard; Yeomans, Larisa; Trexel, Julie; Stringer, Kathleen A. (2017). "Emerging Biomarkers of Illness Severity: Urinary Metabolites Associated with Sepsis and Necrotizing Methicillin‐Resistant Staphylococcus aureus Pneumonia." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 37(9): 1033-1042.
dc.identifier.issn0277-0008
dc.identifier.issn1875-9114
dc.identifier.urihttps://hdl.handle.net/2027.42/138419
dc.publisherWiley Periodicals, Inc.
dc.publisherChapman & Hall/CRC Press
dc.subject.othermetabolomics
dc.subject.otherpediatrics
dc.subject.otherseptic shock
dc.subject.othernecrotizing pneumonia
dc.subject.othernuclear magnetic resonance
dc.titleEmerging Biomarkers of Illness Severity: Urinary Metabolites Associated with Sepsis and Necrotizing Methicillin‐Resistant Staphylococcus aureus Pneumonia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138419/1/phar1973.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138419/2/phar1973_am.pdf
dc.identifier.doi10.1002/phar.1973
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapy
dc.identifier.citedreferenceEsposito S, Tagliabue C, Picciolli I, et al. Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir Med 2011; 12: 1939 – 45.
dc.identifier.citedreferenceSlupsky CM, Cheypesh A, Chao DV, et al. Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses. J Proteome Res 2009; 6: 3029 – 36.
dc.identifier.citedreferenceStringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R 3rd, Standiford TJ. Metabolic consequences of sepsis‐induced acute lung injury revealed by plasma (1)H‐nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 2011; 1: L4 – 11.
dc.identifier.citedreferenceWishart DS. Quantitative metabolomics using NMR. Trends Analyt Chem 2008; 3: 228 – 37.
dc.identifier.citedreferenceMcClay JL, Adkins DE, Isern NG, et al. (1)H nuclear magnetic resonance metabolomics analysis identifies novel urinary biomarkers for lung function. J Proteome Res 2010; 6: 3083 – 90.
dc.identifier.citedreferenceBouatra S, Aziat F, Mandal R, et al. The human urine metabolome. PLoS One 2013; 9: e73076.
dc.identifier.citedreferenceCraig A, Cloarec O, Holmes E, Nicholson JK, Lindon JC. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem 2006; 7: 2262 – 7.
dc.identifier.citedreferenceStorey J. A direct approach to false discovery rates. J Royal Stat Soc Series B (Methodological) 2002; Part 3: 479 – 98.
dc.identifier.citedreferenceYang YH, Speed T. Design and analysis of comparative microarray experiments. Boca Raton, FL: Chapman & Hall/CRC Press, 2003.
dc.identifier.citedreferenceKarnovsky A, Weymouth T, Hull T, et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 2012; 3: 373 – 80.
dc.identifier.citedreferenceFlorin TA, Ambroggio L. Biomarkers for community‐acquired pneumonia in the emergency department. Curr Infect Dis Rep 2014; 12: 451.
dc.identifier.citedreferenceFlanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) 2010; 7: 30.
dc.identifier.citedreferenceReuter SE, Evans AM. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 2012; 9: 553 – 72.
dc.identifier.citedreferenceLautz AJ, Dziorny AC, Denson AR, et al. Value of procalcitonin measurement for early evidence of severe bacterial infections in the pediatric intensive care unit. J Pediatr 2016; 74 – 81 e2.
dc.identifier.citedreferenceBaer G, Baumann P, Buettcher M, et al. Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infection in children and adolescents (ProPAED): a randomized controlled trial. PLoS One 2013; 8: e68419.
dc.identifier.citedreferenceHartman ME, Linde‐Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med 2013; 7: 686 – 93.
dc.identifier.citedreferenceMickiewicz B, Vogel HJ, Wong HR, Winston BW. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med 2013; 9: 967 – 76.
dc.identifier.citedreferenceNoland RC, Koves TR, Seiler SE, et al. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 34: 22840 – 52.
dc.identifier.citedreferencePuskarich MA, Finkel MA, Karnovsky A, et al. Pharmacometabolomics of l‐carnitine treatment response phenotypes in patients with septic shock. Ann Am Thorac Soc 2015; 1: 46 – 56.
dc.identifier.citedreferenceWeiss SL, Selak MA, Tuluc F, et al. Mitochondrial dysfunction in peripheral blood mononuclear cells in pediatric septic shock. Pediatr Crit Care Med 2014; 16: e4 – e12.
dc.identifier.citedreferenceLangley RJ, Tsalik EL, van Velkinburgh JC, et al. An integrated clinico‐metabolomic model improves prediction of death in sepsis. Sci Transl Med 2013; 195: 195ra95.
dc.identifier.citedreferenceSwann JR, Tuohy KM, Lindfors P, et al. Variation in antibiotic‐induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 2011; 8: 3590 – 603.
dc.identifier.citedreferenceSuhre K, Wallaschofski H, Raffler J, et al. A genome‐wide association study of metabolic traits in human urine. Nat Genet 2011; 6: 565 – 9.
dc.identifier.citedreferenceWarner BW, James JH, Hasselgren PO, Hummel RP 3rd, Fischer JE. Effect of sepsis and starvation on amino acid uptake in skeletal muscle. J Surg Res 1987; 4: 377 – 82.
dc.identifier.citedreferenceEmond S. Evidence‐based emergency medicine/rational clinical examination abstract. Dehydration in infants and young children. Ann Emerg Med 2009; 3: 395 – 7.
dc.identifier.citedreferenceSawicki GS, Lu FL, Valim C, Cleveland RH, Colin AA. Necrotising pneumonia is an increasingly detected complication of pneumonia in children. Europ Resp J 2008; 6: 1285 – 91.
dc.identifier.citedreferenceSpencer DA, Thomas MF. Necrotising pneumonia in children. Paediatr Respir Rev 2014; 3: 240 – 5; quiz 45.
dc.identifier.citedreferenceKrenke K, Sanocki M, Urbankowska E, et al. Necrotizing pneumonia and its complications in children. Adv Exp Med Biol 2015; 857: 9 – 17.
dc.identifier.citedreferenceGoldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 1: 2 – 8.
dc.identifier.citedreferenceScott HF, Deakyne SJ, Woods JM, Bajaj L. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med 2015; 4: 381 – 9.
dc.identifier.citedreferenceBradley JS, Byington CL, Shah SS, et al. The management of community‐acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis 2011; 7: e25 – 76.
dc.identifier.citedreferenceBrierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 2009; 2: 666 – 88.
dc.identifier.citedreferenceKovacic MB, Myers JM, Wang N, et al. Identification of KIF3A as a novel candidate gene for childhood asthma using RNA expression and population allelic frequencies differences. PLoS One 2011; 8: e23714.
dc.identifier.citedreferenceBernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre‐analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 2011; 3–4: 231 – 43.
dc.identifier.citedreferenceLacy P, McKay RT, Finkel M, et al. Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS One 2014; 1: e85732.
dc.identifier.citedreferenceSlupsky CM, Rankin KN, Wagner J, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem 2007; 18: 6995 – 7004.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.