Show simple item record

Polylutidines: Multifunctional Surfaces through Vaporâ Based Polymerization of Substituted Pyridinophanes

dc.contributor.authorBally‐le gall, Florence
dc.contributor.authorHussal, Christoph
dc.contributor.authorKramer, Joshua
dc.contributor.authorCheng, Kenneth
dc.contributor.authorKumar, Ramya
dc.contributor.authorEyster, Thomas
dc.contributor.authorBaek, Amy
dc.contributor.authorTrouillet, Vanessa
dc.contributor.authorNieger, Martin
dc.contributor.authorBräse, Stefan
dc.contributor.authorLahann, Joerg
dc.date.accessioned2017-10-23T17:31:57Z
dc.date.available2018-11-01T16:42:01Zen
dc.date.issued2017-09-27
dc.identifier.citationBally‐le gall, Florence ; Hussal, Christoph; Kramer, Joshua; Cheng, Kenneth; Kumar, Ramya; Eyster, Thomas; Baek, Amy; Trouillet, Vanessa; Nieger, Martin; Bräse, Stefan ; Lahann, Joerg (2017). "Polylutidines: Multifunctional Surfaces through Vaporâ Based Polymerization of Substituted Pyridinophanes." Chemistry â A European Journal 23(54): 13342-13350.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/138923
dc.description.abstractWe report a new class of functionalized polylutidine polymers that are prepared by chemical vapor deposition polymerization of substituted [2](1,4)benzeno[2](2,5)pyridinophanes. To prepare sufficient amounts of monomer for CVD polymerization, a new synthesis route for ethynylpyridinophane has been developed in three steps with an overall yield of 59â %. Subsequent CVD polymerization yielded wellâ defined films of poly(2,5â lutidinyleneâ coâ pâ xylylene) and poly(4â ethynylâ 2,5â lutidinyleneâ coâ pâ xylylene). All polymers were characterized by infrared reflectionâ absorption spectroscopy, ellipsometry, contact angle studies, and Xâ ray photoelectron spectroscopy. Moreover, ζâ potential measurements revealed that polylutidine films have higher isoelectric points than the corresponding polyâ xylylene surfaces owing to the nitrogen atoms in the polymer backbone. The availability of reactive alkyne groups on the surface of poly(4â ethynylâ 2,5â lutidinyleneâ coâ pâ xylylene) coatings was confirmed by spatially controlled surface modification by means of Huisgen 1,3â dipolar cycloaddition. Compared to the more hydrophobic polyâ pâ xylylyenes, the presence of the heteroatom in the polymer backbone of polylutidine polymers resulted in surfaces that supported an increased adhesion of primary human umbilical vein endothelial cells (HUVECs). Vaporâ based polylutidine coatings are a new class of polymers that feature increased hydrophilicity and increased cell adhesion without limiting the flexibility in selecting appropriate functional side groups.Coat of many nitrogens! Chemical vapor deposition based polymers have been widely used as biomedical interfaces, but all of these coatings are restricted to simple allâ carbon backbones. For the first time, a class of functionalized lutidine polymers has been prepared by chemical vapor deposition (see figure). This reactive coating opens new perspectives for the design of new cell biomedical applications.
dc.publisherSpringer Science+Business Media
dc.publisherWiley Periodicals, Inc.
dc.subject.otheralkynes
dc.subject.otherclick chemistry
dc.subject.otherpyridinophanes
dc.subject.otherreactive coatings
dc.subject.otherchemical vapor deposition
dc.titlePolylutidines: Multifunctional Surfaces through Vaporâ Based Polymerization of Substituted Pyridinophanes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138923/1/chem201700901.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138923/2/chem201700901_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138923/3/chem201700901-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201700901
dc.identifier.sourceChemistry â A European Journal
dc.identifier.citedreferenceD. A. Black, R. E. Beveridge, B. A. Arndtsen, J. Org. Chem. 2008, 73, 1906.
dc.identifier.citedreferenceT. P. Sun, C. H. Tai, J. T. Wu, C. Y. Wu, W. C. Liang, H. Y. Chen, Biomater. Sci. 2016, 4, 265.
dc.identifier.citedreferenceB. Waterkotte, F. Bally, P. M. Nikolov, A. Waldbaur, B. E. Rapp, R. Truckenmüller, J. Lahann, K. Schmitz, S. Giselbrecht, Adv. Funct. Mater. 2014, 24, 442.
dc.identifier.citedreferenceJ.-T. Wu, C.-H. Huang, W.-C. Liang, Y.-L. Wu, J. Yu, H.-Y. Chen, Macromol. Rapid Commun. 2012, 33, 922.
dc.identifier.citedreferenceJ. T. Wu, T. P. Sun, C. W. Huang, C. T. Su, C. Y. Wu, S. Y. Yeh, D. K. Yang, L. C. Chen, S. T. Ding, H. Y. Chen, Biomater. Sci. 2015, 3, 1266.
dc.identifier.citedreferenceM. Yoshida, R. Langer, A. Lendlein, J. Lahann, J. Macromol. Sci. Polym. Rev. 2006, 46, 347.
dc.identifier.citedreferenceA. Fürstner, M. Alcarazo, H. Krause, C. W. Lehmann, J. Am. Chem. Soc. 2007, 129, 12676.
dc.identifier.citedreferenceJ. J. P. Kramer, M. Nieger, S. Brase, Eur. J. Org. Chem. 2013, 541.
dc.identifier.citedreferenceU. Wörsdörfer, F. Vögtle, M. Nieger, M. Waletzke, S. Grimme, F. Glorius, A. Pfaltz, Synthesis 1999, 597.
dc.identifier.citedreferenceJ. Bruhin, W. Jenny, Chimia 1972, 26, 420.
dc.identifier.citedreferenceJ. Bruhin, W. Jenny, Tetrahedron Lett. 1973, 14, 1215.
dc.identifier.citedreferenceT. Itoh, T. Iwasaki, M. Kubo, S. Iwatsuki, Polym. Bull. 1995, 35, 307.
dc.identifier.citedreferenceZ. Sun, S. Yu, Z. Ding, D. Ma, J. Am. Chem. Soc. 2007, 129, 9300.
dc.identifier.citedreferenceS. Yamada, A. Toshimitsu, Y. Takahashi, Tetrahedron 2009, 65, 2329.
dc.identifier.citedreferenceR. E. Beveridge, B. A. Arndtsen, Synthesis 2010, 1000.
dc.identifier.citedreferenceX. Jiang, H. Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Adv. Funct. Mater. 2008, 18, 27.
dc.identifier.citedreferenceM. S. Kim, Y. N. Shin, M. H. Cho, S. H. Kim, S. K. Kim, Y. H. Cho, G. Khang, I. W. Lee, H. B. Lee, Tissue Eng. 2007, 13, 2095.
dc.identifier.citedreferenceT. Okano, N. Yamada, M. Okuhara, H. Sakai, Y. Sakurai, Biomaterials 1995, 16, 297.
dc.identifier.citedreferenceP. B. vanâ Wachem, T. Beugeling, J. Feijen, A. Bantjes, J. P. Detmers, W. G. vanâ Aken, Biomaterials 1985, 6, 403.
dc.identifier.citedreferenceJ. H. Lee, J. W. Lee, G. Khang, H. B. Lee, Biomaterials 1997, 18, 351.
dc.identifier.citedreferenceH. Y. Chen, J. Lahann, Adv. Mater. 2007, 19, 3801.
dc.identifier.citedreferenceL. Bondarenko, I. Dix, H. Hinrichs, H. Hopf, Synthesis 2004, 2751.
dc.identifier.citedreferenceK. L. Parry, A. G. Shard, R. D. Short, R. G. White, J. D. Whittle, A. Wright, Surf. Interface Anal. 2006, 38, 1497.
dc.identifier.citedreferenceJ. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129.
dc.identifier.citedreferenceJ. Lahann, I. S. Choi, J. Lee, K. F. Jensen, R. Langer, Angew. Chem. Int. Ed. 2001, 40, 3166; Angew. Chem. 2001, 113, 3273.
dc.identifier.citedreferenceG. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
dc.identifier.citedreferenceH. Flack, Acta Crystallogr. Sect. A 1983, 39, 876.
dc.identifier.citedreferenceR. W. W. Hooft, L. H. Straver, A. L. Spek, J. Appl. Crystallogr. 2008, 41, 96.
dc.identifier.citedreferenceD. G. Castner, B. D. Ratner, Surf. Sci. 2002, 500, 28.
dc.identifier.citedreferenceM. E. Alf, A. Asatekin, M. C. Barr, S. H. Baxamusa, H. Chelawat, G. Ozaydin-Ince, C. D. Petruczok, R. Sreenivasan, W. E. Tenhaeff, N. J. Trujillo, S. Vaddiraju, J. Xu, K. K. Gleason, Adv. Mater. 2010, 22, 1993.
dc.identifier.citedreferenceJ. B. Fortin, T. M. Lu, Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films, Springer Science+Business Media, LLC, New York, 2004.
dc.identifier.citedreferenceW. F. Gorham, J. Polym. Sci., Part A-1: Polym. Chem. 1966, 4, 3027.
dc.identifier.citedreferenceH. Hopf, Angew. Chem. Int. Ed. 2008, 47, 9808; Angew. Chem. 2008, 120, 9954.
dc.identifier.citedreferenceI. E. Paulus, M. Heiny, V. P. Shastri, A. Greiner, Polym. Chem. 2016, 7, 54.
dc.identifier.citedreferenceA. O. Ragheb, B. L. Bates, N. E. Fearnot, T. G. Kozma, W. D. Voorhees, A. H. Gershlick, U.S. Patent 6774278, 2004.
dc.identifier.citedreferenceA. K. Bier, M. Bognitzki, J. Mogk, A. Greiner, Macromolecules 2012, 45, 1151.
dc.identifier.citedreferenceC. Y. Wu, H. Y. Sun, W. C. Liang, H. L. Hsu, H. Y. Ho, Y. M. Chen, H. Y. Chen, Chem. Commun. 2016, 52, 3022.
dc.identifier.citedreferenceF. Bally, K. Cheng, H. Nandivada, X. Deng, A. M. Ross, A. Panades, J. Lahann, ACS Appl. Mater. Interfaces 2013, 5, 9262.
dc.identifier.citedreferenceH.-Y. Chen, J. Lahann, Langmuir 2011, 27, 34.
dc.identifier.citedreferenceH.-Y. Chen, T.-J. Lin, M.-Y. Tsai, C.-T. Su, R.-H. Yuan, C.-C. Hsieh, Y.-J. Yang, C.-C. Hsu, H.-M. Hsiao, Y.-C. Hsu, Chem. Commun. 2013, 49, 4531.
dc.identifier.citedreferenceY.-C. Chen, T.-P. Sun, C.-T. Su, J.-T. Wu, C.-Y. Lin, J. Yu, C.-W. Huang, C.-J. Chen, H.-Y. Chen, ACS Appl. Mater. Interfaces 2014, 6, 21906.
dc.identifier.citedreferenceX. Deng, T. W. Eyster, Y. Elkasabi, J. Lahann, Macromol. Rapid Commun. 2012, 33, 640.
dc.identifier.citedreferenceX. Deng, C. Friedmann, J. Lahann, Angew. Chem. Int. Ed. 2011, 50, 6522; Angew. Chem. 2011, 123, 6652.
dc.identifier.citedreferenceZ.-Y. Guan, C.-Y. Wu, Y.-J. Li, H.-Y. Chen, ACS Appl. Mater. Interfaces 2015, 7, 14431.
dc.identifier.citedreferenceY. Liang, J. H. Jordahl, H. Ding, X. Deng, J. Lahann, Chem. Vap. Deposition 2015, 21, 288.
dc.identifier.citedreferenceH. Nandivada, H. Y. Chen, L. Bondarenko, J. Lahann, Angew. Chem. Int. Ed. 2006, 45, 3360; Angew. Chem. 2006, 118, 3438.
dc.identifier.citedreferenceH. Y. Sun, C. Y. Fang, T. J. Lin, Y. C. Chen, C. Y. Lin, H. Y. Ho, M. H. C. Chen, J. S. Yu, D. J. Lee, C. H. Chang, H. Y. Chen, Adv. Mater. Interfaces 2014, 1, 1400093.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.