Show simple item record

Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm

dc.contributor.authorKronberg, E. A.
dc.contributor.authorWelling, D.
dc.contributor.authorKistler, L. M.
dc.contributor.authorMouikis, C.
dc.contributor.authorDaly, P. W.
dc.contributor.authorGrigorenko, E. E.
dc.contributor.authorKlecker, B.
dc.contributor.authorDandouras, I.
dc.date.accessioned2017-11-13T16:41:33Z
dc.date.available2018-11-01T16:42:01Zen
dc.date.issued2017-09
dc.identifier.citationKronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I. (2017). "Contribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm." Journal of Geophysical Research: Space Physics 122(9): 9427-9439.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/139120
dc.description.abstractMagnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure in the near‐Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low‐energy and energetic ions of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of energetic ions (>40 keV) and of heavy ions to the total plasma pressure is ≃76–98.6% in the ring current and ≃14–59% in the magnetotail. The main source of oxygen ions, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ −13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different ion outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy ions agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.Plain Language SummaryMagnetospheric plasma sheet ions drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface and strongly affects the strength of a magnetic storm. The contribution of energetic ions and of heavy ions to the total plasma pressure in the near‐Earth plasma sheet is not always considered. In this study, we evaluate the input of these components for the storm observed from 27 September until 3 October 2002 using observations by the Cluster mission. We compare the results with simulations from the Space Weather Modeling Framework which take into account ionospheric ion outflow. We show that neglecting the contribution of energetic ions and of heavy ions to the total plasma pressure can lead to the pressure underestimations of 76–98.6% in the ring current and 14–59% in the magnetotail. We find that it is important to consider heavy ions, especially ionospheric oxygen, and include the energetic part of the ion distribution in the simulations of the ring current and the magnetotail during the magnetic storm.Key PointsThe contribution of ions of different species to the total plasma pressure in the near‐Earth magnetosphere is estimatedThe ability of the Space Weather Modeling Framework to reproduce the plasma pressure during a magnetic storm is testedThe main source of oxygen ions is located at distances closer than XGSE = −13.5 RE during the main phase
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplasma pressure
dc.subject.othermagnetotail
dc.subject.otherring current
dc.subject.othermagnetic storm
dc.subject.otherion composition
dc.titleContribution of energetic and heavy ions to the plasma pressure: The 27 September to 3 October 2002 storm
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139120/1/jgra53777.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139120/2/jgra53777_am.pdf
dc.identifier.doi10.1002/2017JA024215
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePulkkinen, T. I., et al. ( 2001 ), Ring current ion composition during solar minimum and rising solar activity: Polar/CAMMICE/MICS results, J. Geophys. Res., 106, 19,131 – 19,148, doi: 10.1029/2000JA003036.
dc.identifier.citedreferenceLi, K., et al. ( 2013 ), Transport of cold ions from the polar ionosphere to the plasma sheet, J. Geophys. Res. Space Physics, 118, 5467 – 5477, doi: 10.1002/jgra.50518.
dc.identifier.citedreferenceLiemohn, M. W., R. M. Katus, and R. Ilie ( 2015 ), Statistical analysis of storm‐time near‐Earth current systems, Ann. Geophys., 33, 965 – 982, doi: 10.5194/angeo‐33‐965‐2015.
dc.identifier.citedreferenceLyons, L. R., and D. J. Williams ( 1984 ), Quantitative Aspects of Magnetospheric Physics, 8  pp., D. Reidel Publ. Comp., Dordrecht, Netherlands.
dc.identifier.citedreferenceMaggiolo, R., and L. M. Kistler ( 2014 ), Spatial variation in the plasma sheet composition: Dependence on geomagnetic and solar activity, J. Geophys. Res. Space Physics, 119, 2836 – 2857, doi: 10.1002/2013JA019517.
dc.identifier.citedreferenceMoebius, E., M. Scholer, B. Klecker, D. Hovestadt, G. Gloeckler, and F. M. Ipavich ( 1987 ), Acceleration of ions of ionospheric origin in the plasmasheet during substorm activity, in Magnetotail Physics, edited by A. T. Y. Lui, pp. 231 – 234, Johns Hopkins Univ. Press, Baltimore, Md.
dc.identifier.citedreferenceMouikis, C. G., L. M. Kistler, G. Wang, and Y. Liu ( 2014 ), Background subtraction for the Cluster/CODIF plasma ion mass spectrometer, Geosci. Instr. Methods Data Syst., 3, 41 – 48, doi: 10.5194/gi‐3‐41‐2014.
dc.identifier.citedreferenceO’Brien, T. P., and R. L. McPherron ( 2000 ), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707 – 7720, doi: 10.1029/1998JA000437.
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309, doi: 10.1006/jcph.1999.6299.
dc.identifier.citedreferenceRème, H., et al. ( 2001 ), First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303 – 1354.
dc.identifier.citedreferenceRidley, A. J., D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell ( 2001 ), Using steady state MHD results to predict the global state of the magnetosphere‐ionosphere system, J. Geophys. Res., 106, 30,067 – 30,076, doi: 10.1029/2000JA002233.
dc.identifier.citedreferenceRoeder, J. L., J. F. Fennell, M. W. Chen, M. Schulz, M. Grande, and S. Livi ( 1996 ), CRRES observations of the composition of the ring‐current ion populations, Adv. Space Res., 17, 17 – 24, doi: 10.1016/0273‐1177(95)00689‐C.
dc.identifier.citedreferenceSchunk, R. W., and J. J. Sojka ( 1989 ), A three‐dimensional time‐dependent model of the polar wind, J. Geophys. Res., 94 ( A7 ), 8973—8991, doi: 10.1029/JA094iA07p08973.
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125 – 3130, doi: 10.1029/JZ071i013p03125.
dc.identifier.citedreferenceSojka, J., and R. Schunk ( 1997 ), Simulations of high latitude ionospheric climatology, J. Atmos. Sol. Terr. Phys., 59 ( 2 ), 207 – 229, doi: 10.1016/S1364‐6826(96)00037‐5.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceTsyganenko, N. A., and T. Mukai ( 2003 ), Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 108, 1136, doi: 10.1029/2002JA009707.
dc.identifier.citedreferenceVallat, C., et al. ( 2005 ), First current density measurements in the ring current region using simultaneous multi‐spacecraft CLUSTER‐FGM data, Ann. Geophys., 23, 1849 – 1865, doi: 10.5194/angeo‐23‐1849‐2005.
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010 ), Exploring sources of magnetospheric plasma using multispecies MHD, J. Geophys. Res., 115, A04201, doi: 10.1029/2009JA014596.
dc.identifier.citedreferenceWelling, D. T., V. K. Jordanova, S. G. Zaharia, A. Glocer, and G. Toth ( 2011 ), The effects of dynamic ionospheric outflow on the ring current, J. Geophys. Res., 116, A00J19, doi: 10.1029/2010JA015642.
dc.identifier.citedreferenceWelling, D. T., V. K. Jordanova, A. Glocer, G. Toth, M. W. Liemohn, and D. R. Weimer ( 2015 ), The two‐way relationship between ionospheric outflow and the ring current, J. Geophys. Res. Space Physics, 120, 4338 – 4353, doi: 10.1002/2015JA021231.
dc.identifier.citedreferenceWelling, D. T., A. R. Barakat, J. V. Eccles, R. W. Schunk, and C. R. Chappell ( 2016 ), Coupling the generalized polar wind model to global magnetohydrodynamics: Initial results, in Magnetosphere‐Ionosphere Coupling in the Solar System, vol. 222, chap. 14, pp.179–193, John Wiley, Hoboken, N. J., doi: 10.15142/T3C88J.
dc.identifier.citedreferenceWilken, B., et al. ( 2001 ), First results from the RAPID imaging energetic particle spectrometer on board Cluster, Ann. Geophys., 19, 1355 – 1366.
dc.identifier.citedreferenceWilliams, D. J. ( 1981 ), Ring current composition and sources—An update, Planet. Space Sci., 29, 1195 – 1203, doi: 10.1016/0032‐0633(81)90124‐0.
dc.identifier.citedreferenceYu, Y., and A. J. Ridley ( 2013 ), Exploring the influence of ionospheric O + outflow on magnetospheric dynamics: Dependence on the source location, J. Geophys. Res. Space Physics, 118, 1711 – 1722, doi: 10.1029/2012JA018411.
dc.identifier.citedreferenceZhao, H., et al. ( 2015 ), The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements, J. Geophys. Res. Space Physics, 120, 7493 – 7511, doi: 10.1002/2015JA021533.
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, V. V. Kalegaev, Y. I. Feldstein, and A. Grafe ( 1996 ), Magnetic storms and magnetotail currents, J. Geophys. Res., 101, 7737 – 7748, doi: 10.1029/95JA03509.
dc.identifier.citedreferenceBarakat, A. R., and R. W. Schunk ( 2001 ), Effects of wave‐particle interactions on the dynamic behavior of the generalized polar wind, J. Atmos. Sol. Terr. Phys., 63, 75 – 83, doi: 10.1016/S1364‐6826(00)00106‐1.
dc.identifier.citedreferenceBarakat, A. R., and R. W. Schunk ( 2006 ), A three‐dimensional model of the generalized polar wind, J. Geophys. Res., 111, A12314, doi: 10.1029/2006JA011662.
dc.identifier.citedreferenceBarakat, A. R., J. V. Eccles, and R. W. Schunk ( 2015 ), Effects of geographic‐geomagnetic pole offset on ionospheric outflow: Can the ionosphere wag the magnetospheric tail?, Geophys. Res. Lett., 42, 8288 – 8293, doi: 10.1002/2015GL065736.
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and R. C. Elphic ( 1998 ), The driving of the plasma sheet by the solar wind, J. Geophys. Res., 103, 17,617 – 17,640, doi: 10.1029/97JA02986.
dc.identifier.citedreferenceDaly, P. W., and E. A. Kronberg ( 2010 ), RAPID products at the Cluster Active Archive, in The Cluster Active Archive, Studying the Earth’s Space Plasma Environment, edited by H. Laakso, M. Taylor, and C. P. Escoubet, pp. 145 – 158, Springer, Berlin, doi: 10.1007/978‐90‐481‐3499‐1_9.
dc.identifier.citedreferenceDe Zeeuw, D., T. Gombosi, C. Groth, K. Powell, and Q. Stout ( 2000 ), An adaptive MHD method for global space weather simulations, IEEE Trans. Plasma Sci., 28 ( 6 ), 1956 – 1965, doi: 10.1109/27.902224.
dc.identifier.citedreferenceDenton, M. H., M. F. Thomsen, V. K. Jordanova, M. G. Henderson, J. E. Borovsky, J. S. Denton, D. Pitchford, and D. P. Hartley ( 2015 ), An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit, Space Weather, 13, 233 – 249, doi: 10.1002/2015SW001168.
dc.identifier.citedreferenceDenton, M. H., M. G. Henderson, V. K. Jordanova, M. F. Thomsen, J. E. Borovsky, J. Woodroffe, D. P. Hartley, and D. Pitchford ( 2016 ), An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions, Space Weather, 14, 511 – 523, doi: 10.1002/2016SW001409.
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239 – 2252, doi: 10.1029/JZ064i012p02239.
dc.identifier.citedreferenceDremukhina, L. A., Y. I. Feldstein, I. I. Alexeev, V. V. Kalegaev, and M. E. Greenspan ( 1999 ), Structure of the magnetospheric magnetic field during magnetic storms, J. Geophys. Res., 104, 28,351 – 28,360, doi: 10.1029/1999JA900261.
dc.identifier.citedreferenceDubyagin, S., N. Y. Ganushkina, I. Sillanpää, and A. Runov ( 2016 ), Solar wind‐driven variations of electron plasma sheet densities and temperatures beyond geostationary orbit during storm times, J. Geophys. Res. Space Physics, 121, 8343 – 8360, doi: 10.1002/2016JA022947.
dc.identifier.citedreferenceEscoubet, C. P., R. Schmidt, and M. L. Goldstein ( 1997 ), Cluster—Science and mission overview, Space Sci. Rev., 79, 11 – 32.
dc.identifier.citedreferenceFok, M.‐C., R. A. Wolf, R. W. Spiro, and T. E. Moore ( 2001 ), Comprehensive computational model of Earth’s ring current, J. Geophys. Res., 106 ( A5 ), 8417 – 8424, doi: 10.1029/2000JA000235.
dc.identifier.citedreferenceGkioulidou, M., A. Y. Ukhorskiy, D. G. Mitchell, and L. J. Lanzerotti ( 2016 ), Storm time dynamics of ring current protons: Implications for the long‐term energy budget in the inner magnetosphere, Geophys. Res. Lett., 43, 4736 – 4744, doi: 10.1002/2016GL068013.
dc.identifier.citedreferenceGlocer, A., G. Tóth, T. Gombosi, and D. Welling ( 2009a ), Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 114, A05216, doi: 10.1029/2009JA014053.
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. Ma, T. Gombosi, J.‐C. Zhang, and L. M. Kistler ( 2009b ), Multifluid block‐adaptive‐tree solar wind roe‐type upwind scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.
dc.identifier.citedreferenceGlocer, A., N. Kitamura, G. Toth, and T. Gombosi ( 2012 ), Modeling solar zenith angle effects on the polar wind, J. Geophys. Res., 117, A04318, doi: 10.1029/2011JA017136.
dc.identifier.citedreferenceGombosi, T. I., and A. F. Nagy ( 1989 ), Time‐dependent modeling of field‐aligned current‐generated ion transients in the polar wind, J. Geophys. Res., 94 ( A1 ), 359 – 369, doi: 10.1029/JA094iA01p00359.
dc.identifier.citedreferenceGreenspan, M. E., and D. C. Hamilton ( 2002 ), Relative contributions of H + and O + to the ring current energy near magnetic storm maximum, J. Geophys. Res., 107, 1043, doi: 10.1029/2001JA000155.
dc.identifier.citedreferenceGrigorenko, E. E., E. A. Kronberg, and P. W. Daly ( 2017 ), Heating and acceleration of charged particles during magnetic field dipolarizations, Cosmic Res., 55, 57 – 66, doi: 10.1134/S0010952517010063.
dc.identifier.citedreferenceGrimald, S., I. Dandouras, P. Robert, and E. Lucek ( 2012 ), Study of the applicability of the curlometer technique with the four Cluster spacecraft in regions close to Earth, Ann. Geophys., 30, 597 – 611, doi: 10.5194/angeo‐30‐597‐2012.
dc.identifier.citedreferenceHaaland, S., et al. ( 2015 ), Estimation of cold plasma outflow during geomagnetic storms, J. Geophys. Res. Space Physics, 120, 10,622 – 10,639, doi: 10.1002/2015JA021810.
dc.identifier.citedreferenceHamilton, D. C., G. Gloeckler, F. M. Ipavich, B. Wilken, and W. Stuedemann ( 1988 ), Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14,343 – 14,355, doi: 10.1029/JA093iA12p14343.
dc.identifier.citedreferenceJohnstone, A. D., et al. ( 1997 ), Peace: A plasma electron and current experiment, Space Sci. Rev., 79, 351 – 398, doi: 10.1023/A:1004938001388.
dc.identifier.citedreferenceJordanova, V. K., J. U. Kozyra, A. F. Nagy, and G. V. Khazanov ( 1997 ), Kinetic model of the ring current‐atmosphere interactions, J. Geophys. Res., 102 ( A7 ), 14,279 – 14,291, doi: 10.1029/96JA03699.
dc.identifier.citedreferenceKamide, Y., and A. Chian ( 2007 ), Handbook of the Solar‐Terrestrial Environment, pp. 364 – 367, Springer, Berlin, Heidelberg, and New York.
dc.identifier.citedreferenceKeika, K., et al. ( 2016 ), Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere, J. Geophys. Res. Space Physics, 121, 7739 – 7752, doi: 10.1002/2016JA022384.
dc.identifier.citedreferenceKistler, L. M., E. Möbius, B. Klecker, G. Gloeckler, and F. M. Ipavich ( 1990 ), Spatial variations in the suprathermal ion distributions during substorms in the plasma sheet, J. Geophys. Res., 95, 18,871 – 18,885, doi: 10.1029/JA095iA11p18871.
dc.identifier.citedreferenceKistler, L. M., E. Moebius, W. Baumjohann, G. Paschmann, and D. C. Hamilton ( 1992 ), Pressure changes in the plasma sheet during substorm injections, J. Geophys. Res., 97, 2973 – 2983, doi: 10.1029/91JA02802.
dc.identifier.citedreferenceKistler, L. M., D. J. Larson, E. Möbius, and W. Baumjohann ( 1994 ), The decay of suprathermal ion fluxes during the substorm recovery phase, J. Geophys. Res., 99, 10,941 – 10,954, doi: 10.1029/93JA03180.
dc.identifier.citedreferenceKistler, L. M., C. G. Mouikis, B. Klecker, and I. Dandouras ( 2010 ), Cusp as a source for oxygen in the plasma sheet during geomagnetic storms, J. Geophys. Res., 115, A03209, doi: 10.1029/2009JA014838.
dc.identifier.citedreferenceKistler, L. M., C. G. Mouikis, and K. J. Genestreti ( 2013 ), In‐flight calibration of the Cluster/CODIF sensor, Geosci. Instr. Methods Data Syst., 2, 225 – 235, doi: 10.5194/gi‐2‐225‐2013.
dc.identifier.citedreferenceKrimigis, S. M., R. W. McEntire, T. A. Potemra, G. Gloeckler, F. L. Scarf, and E. G. Shelley ( 1985 ), Magnetic storm of September 4, 1984—A synthesis of ring current spectra and energy densities measured with AMPTE/CCE, Geophys. Res. Lett., 12, 329 – 332, doi: 10.1029/GL012i005p00329.
dc.identifier.citedreferenceKronberg, E. A., and P. W. Daly ( 2013 ), Spectral analysis for wide energy channels, Geosci. Instr. Methods Data Syst. Discuss., 3, 533 – 546, doi: 10.5194/gid‐3‐533‐2013.
dc.identifier.citedreferenceKronberg, E. A., P. W. Daly, I. Dandouras, S. Haaland, and E. Georgescu ( 2010 ), Generation and validation of ion energy spectra based on Cluster RAPID and CIS measurements, in The Cluster Active Archive, Studying the Earth’s Space Plasma Environment, edited by H. Laakso, M. Taylor, and C. P. Escoubet, pp. 301 – 306, Springer, Dordrecht, Netherlands.,doi: 10.1007/978‐90‐481‐3499‐1_20.
dc.identifier.citedreferenceKronberg, E. A., S. E. Haaland, P. W. Daly, E. E. Grigorenko, L. M. Kistler, M. Fränz, and I. Dandouras ( 2012 ), Oxygen and hydrogen ion abundance in the near‐Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions, J. Geophys. Res., 117, A12208, doi: 10.1029/2012JA018071.
dc.identifier.citedreferenceKronberg, E. A., et al. ( 2014 ), Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models, Space Sci. Rev., 184, 173 – 235, doi: 10.1007/s11214‐014‐0104‐0.
dc.identifier.citedreferenceKronberg, E. A., E. E. Grigorenko, S. E. Haaland, P. W. Daly, D. C. Delcourt, H. Luo, L. M. Kistler, and I. Dandouras ( 2015 ), Distribution of energetic oxygen and hydrogen in the near‐Earth plasma sheet, J. Geophys. Res. Space Physics, 120, 3415 – 3431, doi: 10.1002/2014JA020882.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.