Show simple item record

Large‐scale solar wind flow around Saturn’s nonaxisymmetric magnetosphere

dc.contributor.authorSulaiman, A. H.
dc.contributor.authorJia, X.
dc.contributor.authorAchilleos, N.
dc.contributor.authorSergis, N.
dc.contributor.authorGurnett, D. A.
dc.contributor.authorKurth, W. S.
dc.date.accessioned2017-11-13T16:41:38Z
dc.date.available2018-11-01T16:42:01Zen
dc.date.issued2017-09
dc.identifier.citationSulaiman, A. H.; Jia, X.; Achilleos, N.; Sergis, N.; Gurnett, D. A.; Kurth, W. S. (2017). "Large‐scale solar wind flow around Saturn’s nonaxisymmetric magnetosphere." Journal of Geophysical Research: Space Physics 122(9): 9198-9206.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/139124
dc.description.abstractThe interaction between the solar wind and a magnetosphere is central to the dynamics of a planetary system. Here we address fundamental questions on the large‐scale magnetosheath flow around Saturn using a 3‐D magnetohydrodynamic (MHD) simulation. We find Saturn’s polar‐flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high‐β magnetosheath and, in turn, the high‐MA bow shock. Together with long‐term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind‐magnetosphere interactions such as reconnection and shear flow‐driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Key PointsPreferential flow over the poles with at least 20% more mass flux channeled over the poles than around the equator at SaturnMagnetosheath flow predominantly driven by pressure gradient forces owing to the high‐β regimeUnbalanced forces exerted on the magnetosheath plasma leading to twisting. Parker spiral IMF exhibits enhanced Bz in the magnetosheathPlain Language SummaryRotating gas giants are bulged along the equator and flattened along the poles owing to their embedded plasma disks. This paper addresses some fundamental questions on how the solar wind interacts with an oblate magnetosphere as the obstacle. Results show and quantify preferential flow over the poles compared to around the equator. The magnetospheres of gas giants can be thought of as somewhere between a sphere, where flow travels symmetrically around in all directions, and a wing, where flow travels entirely over and beneath. This leads to unbalanced forces exerted on the upstream plasma, which substantially changes the magnetic field conditions upstream of the planets. Such conditions are what control means of energy exchange between the solar wind and the planets, namely, reconnection and shear‐driven instabilities.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersolar wind
dc.subject.othermagnetosheath
dc.subject.otherSaturn
dc.subject.otherJupiter
dc.titleLarge‐scale solar wind flow around Saturn’s nonaxisymmetric magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139124/1/jgra53776.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139124/2/jgra53776_am.pdf
dc.identifier.doi10.1002/2017JA024595
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferencePilkington, N. M., N. Achilleos, C. S. Arridge, A. Masters, N. Sergis, A. J. Coates, and M. K. Dougherty ( 2014 ), Polar confinement of Saturn’s magnetosphere revealed by in situ Cassini observations, J. Geophys. Res. Space Physics, 119, 2858 – 2875, doi: 10.1002/2014JA019774.
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47.
dc.identifier.citedreferenceErkaev, N. V., C. J. Farrugia, and H. K. Biernat ( 1996 ), Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies, J. Geophys. Res., 101, 10,665 – 10,672, doi: 10.1029/95JA03518.
dc.identifier.citedreferenceFairfield, D. H. ( 1967 ), The ordered magnetic field of the magnetosheath, J. Geophys. Res., 72, 5865 – 5877, doi: 10.1029/JZ072i023p05865.
dc.identifier.citedreferenceFarrugia, C. J., H. K. Biernat, and N. V. Erkaev ( 1998 ), The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters, Planet. Space Sci., 46, 507 – 514, doi: 10.1016/S0032‐0633(97)00225‐0.
dc.identifier.citedreferenceGombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semi‐relativistic magnetohydrodynamics and physics based convergence acceleration, J. Comput. Phys., 177, 176 – 205, doi: 10.1006/jcph.2002.7009.
dc.identifier.citedreferenceJia, X., K. C. Hansen, T. I. Gombosi, M. G. Kivelson, G. Tóth, D. L. DeZeeuw, and A. J. Ridley ( 2012 ), Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation, J. Geophys. Res., 117, A05225, doi: 10.1029/2012JA017575.
dc.identifier.citedreferenceKellett, S., C. S. Arridge, E. J. Bunce, A. J. Coates, S. W. H. Cowley, M. K. Dougherty, A. M. Persoon, N. Sergis, and R. J. Wilson ( 2011 ), Saturn’s ring current: Local time dependence and temporal variability, J. Geophys. Res., 116, A05220, doi: 10.1029/2010JA016216.
dc.identifier.citedreferenceKivelson, M. G., and X. Jia ( 2014 ), Control of periodic variations in Saturn’s magnetosphere by compressional waves, J. Geophys. Res. Space Physics, 119, 8030 – 8045, doi: 10.1002/2014JA020258.
dc.identifier.citedreferenceKrimigis, S. M., et al. ( 2004 ), Magnetosphere imagining instrument (MIMI) on the Cassini mission to Saturn/Titan, Space Sci. Rev., 114, 233 – 329, doi: 10.1007/s11214‐004‐1410‐8.
dc.identifier.citedreferenceLavraud, B., J. E. Borovsky, A. J. Ridley, E. W. Pogue, M. F. Thomsen, H. Rème, A. N. Fazakerley, and E. A. Lucek ( 2007 ), Strong bulk plasma acceleration in Earth’s magnetosheath: A magnetic slingshot effect? Geophys. Res. Lett., 34, L14102, doi: 10.1029/2007GL030024.
dc.identifier.citedreferenceMa, X., B. Stauffer, P. A. Delamere, and A. Otto ( 2015 ), Asymmetric Kelvin‐Helmholtz propagation at Saturn’s dayside magnetopause, J. Geophys. Res. Space Physics, 120, 1867 – 1875, doi: 10.1002/2014JA020746.
dc.identifier.citedreferenceMasters, A. ( 2015 ), The dayside reconnection voltage applied to Saturn’s magnetosphere, Geophys. Res. Lett., 42, 2577 – 2585, doi: 10.1002/2015GL063361.
dc.identifier.citedreferenceMasters, A., N. Achilleos, C. Bertucci, M. K. Dougherty, S. J. Kanani, C. S. Arridge, H. J. McAndrews, and A. J. Coates ( 2009 ), Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin‐Helmholtz instability, Planet. Space Sci., 57, 1769 – 1778, doi: 10.1016/j.pss.2009.02.010.
dc.identifier.citedreferenceMasters, A., J. P. Eastwood, M. Swisdak, M. F. Thomsen, C. T. Russell, N. Sergis, F. J. Crary, M. K. Dougherty, A. J. Coates, and S. M. Krimigis ( 2012 ), The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause, Geophys. Res. Lett., 39, L08103, doi: 10.1029/2012GL051372.
dc.identifier.citedreferencePilkington, N. M., N. Achilleos, C. S. Arridge, P. Guio, A. Masters, L. C. Ray, N. Sergis, M. F. Thomsen, A. J. Coates, and M. K. Dougherty ( 2015 ), Asymmetries observed in Saturn’s magnetopause geometry, Geophys. Res. Lett., 42, 6890 – 6898, doi: 10.1002/2015GL065477.
dc.identifier.citedreferenceSergis, N., C. M. Jackman, A. Masters, S. M. Krimigis, M. F. Thomsen, D. C. Hamilton, D. G. Mitchell, M. K. Dougherty, and A. J. Coates ( 2013 ), Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma, J. Geophys. Res. Space Physics, 118, 1620 – 1634, doi: 10.1002/jgra.50164.
dc.identifier.citedreferenceSergis, N., C. M. Jackman, M. F. Thomsen, S. M. Krimigis, D. G. Mitchell, D. C. Hamilton, M. K. Dougherty, N. Krupp, and R. J. Wilson ( 2017 ), Radial and local time structure of the Saturnian ring current, revealed by Cassini, J. Geophys. Res. Space Physics, 122, 1803 – 1815, doi: 10.1002/2016JA023742.
dc.identifier.citedreferenceSlavin, J. A., E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Solar wind flow about the outer planets—Gas dynamic modeling of the Jupiter and Saturn bow shocks, J. Geophys. Res., 90, 6275 – 6286, doi: 10.1029/JA090iA07p06275.
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1980 ), A new predictive model for determining solar wind‐terrestrial planet interactions, J. Geophys. Res., 85 ( A12 ), 6769 – 6777, doi: 10.1029/JA085iA12p06769.
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydrodynamic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253, doi: 10.1016/0032‐0633(66)90124‐3.
dc.identifier.citedreferenceSulaiman, A. H., A. Masters, M. K. Dougherty, and X. Jia ( 2014 ), The magnetic structure of Saturn’s magnetosheath, J. Geophys. Res. Space Physics, 119, 5651 – 5661, doi: 10.1002/2014JA020019.
dc.identifier.citedreferenceSulaiman, A. H., A. Masters, and M. K. Dougherty ( 2016 ), Characterization of Saturn’s bow shock: Magnetic field observations of quasi‐perpendicular shocks, J. Geophys. Res. Space Physics, 121, 4425 – 4434, doi: 10.1002/2016JA022449.
dc.identifier.citedreferenceBunce, E. J., S. W. H. Cowley, I. I. Alexeev, C. S. Arridge, M. K. Dougherty, J. D. Nichols, and C. T. Russell ( 2007 ), Cassini observations of the variation of Saturn’s ring current parameters with system size, J. Geophys. Res., 112, A10202, doi: 10.1029/2007JA012275.
dc.identifier.citedreferenceBurkholder, B., P. A. Delamere, X. Ma, M. F. Thomsen, R. J. Wilson, and F. Bagenal ( 2017 ), Local time asymmetry of Saturn’s magnetosheath flows, Geophys. Res. Lett., 44, 5877 – 5883, doi: 10.1002/2017GL073031.
dc.identifier.citedreferenceCrooker, N. U., J. G. Luhmann, C. T. Russell, E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Magnetic field draping against the dayside magnetopause, J. Geophys. Res., 90, 3505 – 3510, doi: 10.1029/JA090iA04p03505.
dc.identifier.citedreferenceDelamere, P. A., R. J. Wilson, and A. Masters ( 2011 ), Kelvin‐Helmholtz instability at Saturn’s magnetopause: Hybrid simulations, J. Geophys. Res., 116, A10222, doi: 10.1029/2011JA016724.
dc.identifier.citedreferenceDelamere, P. A., R. J. Wilson, S. Eriksson, and F. Bagenal ( 2013 ), Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn’s magnetopause: Global survey, J. Geophys. Res. Space Physics, 118, 393 – 404, doi: 10.1029/2012JA018197.
dc.identifier.citedreferenceDesroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2013 ), Conditions at the magnetopause of Saturn and implications for the solar wind interaction, J. Geophys. Res. Space Physics, 118, 3087 – 3095, doi: 10.1002/jgra.50294.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.