Show simple item record

Novel carbohydrate binding modules in the surface anchored α‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut

dc.contributor.authorCockburn, Darrell W.
dc.contributor.authorSuh, Carolyn
dc.contributor.authorMedina, Krizia Perez
dc.contributor.authorDuvall, Rebecca M.
dc.contributor.authorWawrzak, Zdzislaw
dc.contributor.authorHenrissat, Bernard
dc.contributor.authorKoropatkin, Nicole M.
dc.date.accessioned2018-02-05T16:34:45Z
dc.date.available2019-03-01T21:00:18Zen
dc.date.issued2018-01
dc.identifier.citationCockburn, Darrell W.; Suh, Carolyn; Medina, Krizia Perez; Duvall, Rebecca M.; Wawrzak, Zdzislaw; Henrissat, Bernard; Koropatkin, Nicole M. (2018). "Novel carbohydrate binding modules in the surface anchored α‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut." Molecular Microbiology 107(2): 249-264.
dc.identifier.issn0950-382X
dc.identifier.issn1365-2958
dc.identifier.urihttps://hdl.handle.net/2027.42/141499
dc.publisherPan Stanford Publishing Pte. Ltd
dc.publisherWiley Periodicals, Inc.
dc.titleNovel carbohydrate binding modules in the surface anchored α‐amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141499/1/mmi13881.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141499/2/mmi13881_am.pdf
dc.identifier.doi10.1111/mmi.13881
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceQin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. ( 2012 ) A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature 490: 55 – 60.
dc.identifier.citedreferenceRajilic‐Stojanovic, M., Shanahan, F., Guarner, F., and de Vos, W.M. ( 2013 ) Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 19: 481 – 488.
dc.identifier.citedreferenceRamsay, A.G., Scott, K.P., Martin, J.C., Rincon, M.T., and Flint, H.J. ( 2006 ) Cell‐associated α‐amylases of butyrate‐producing Firmicute bacteria from the human colon. Microbiology 152: 3281 – 3290.
dc.identifier.citedreferenceRidaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., et al. ( 2013 ) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341: 1079 – 1090.
dc.identifier.citedreferenceRios‐Covian, D., Ruas‐Madiedo, Margolles, P., Gueimonde, A.M., de Los Reyes‐Gavilan, C.G., and Salazar, N. ( 2016 ) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7: 185.
dc.identifier.citedreferenceRoediger, W.E. ( 1980 ) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21: 793 – 798.
dc.identifier.citedreferenceShanahan, F., van Sinderen, D., O’toole, P.W., and Stanton, C. ( 2017 ) Feeding the microbiota: transducer of nutrient signals for the host. Gut 66: 1709 – 1717.
dc.identifier.citedreferenceSvensson, B., Svendsen, T.G., Svendsen, I., Sakai, T., and Ottesen, M. ( 1982 ) Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res Comm 47: 55.
dc.identifier.citedreferenceTap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J.P., et al. ( 2009 ) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11: 2574 – 2584.
dc.identifier.citedreferenceValk, V., Eeuwema, W., Sarian, F.D., van der Kaaij, R.M., Dijkhuizen, L., and Parales, R.E. ( 2015 ) Degradation of granular starch by the bacterium Microbacterium aurum Strain B8.A involves a modular α‐amylase enzyme system with FNIII and CBM25 domains. Appl Environ Microbiol 81: 6610 – 6620.
dc.identifier.citedreferenceValk, V., Lammerts van Bueren, A., van der Kaaij, R.M., and Dijkhuizen, L. ( 2016 ) Carbohydrate‐binding module 74 is a novel starch‐binding domain associated with large and multidomain α‐amylase enzymes. FEBS J 283: 2354 – 2368.
dc.identifier.citedreferenceVan Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L., and Clardy, J. ( 1993 ) Atomic structures of the human immunophilin FKBP‐12 complexes with FK506 and rapamycin. J Mol Biol 229: 105 – 124.
dc.identifier.citedreferenceVenkataraman, A., Sieber, J.R., Schmidt, A.W., Waldron, C., Theis, K.R., and Schmidt, T.M. ( 2016 ) Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome 4: 33.
dc.identifier.citedreferenceVonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, T., and Bricogne, G. ( 2011 ) Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr 67: 293 – 302.
dc.identifier.citedreferenceWaffenschmidt, S., and Jaenicke, L. ( 1987 ) Assay of reducing sugars in the nanomole range with 2,2′‐bicinchoninate. Anal Biochem 165: 337 – 340.
dc.identifier.citedreferenceWang, H.B., Wang, P.Y., Wang, X., Wan, Y.L., and Liu, Y.C. ( 2012 ) Butyrate enhances intestinal epithelial barrier function via up‐regulation of tight junction protein Claudin‐1 transcription. Dig Dis Sci 57: 3126 – 3135.
dc.identifier.citedreferenceWarren, F.J., Royall, P.G., Gaisford, S., Butterworth, P.J., and Ellis, P.R. ( 2011 ) Binding interactions of α‐amylase with starch granules: the influence of supramolecular structure and surface area. Carbohydr Polym 86: 1038 – 1047.
dc.identifier.citedreferenceWinn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., et al. ( 2011 ) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235 – 242.
dc.identifier.citedreferenceWong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A., and Jenkins, D.J. ( 2006 ) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40: 235 – 243.
dc.identifier.citedreferenceZackular, J.P., Baxter, N.T., Iverson, K.D., Sadler, W.D., Petrosino, J.F., Chen, G.Y., and Schloss, P.D. ( 2013 ) The gut microbiome modulates colon tumorigenesis. mBio 4: e00692 – e00613.
dc.identifier.citedreferenceZe, X., Duncan, S.H., Louis, P., and Flint, H.J. ( 2012 ) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6: 1535 – 1543.
dc.identifier.citedreferenceAbbott, D.W., and Boraston, A.B. ( 2012 ) Quantitative approaches to the analysis of carbohydrate‐binding module function. Methods Enzymol 510: 211 – 231.
dc.identifier.citedreferenceAdams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., et al. ( 2010 ) PHENIX: a comprehensive Python‐based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213 – 221.
dc.identifier.citedreferenceAfonine, P.V., Grosse‐Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., et al. ( 2012 ) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68: 352 – 367.
dc.identifier.citedreferenceAgirre, J., Iglesias‐Fernandez, J., Rovira, C., Davies, G.J., Wilson, K.S., and Cowtan, K.D. ( 2015 ) Privateer: software for the conformational validation of carbohydrate structures. Nat Struct Mol Biol 22: 833 – 834.
dc.identifier.citedreferenceAltschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. ( 1990 ) Basic local alignment search tool. J Mol Biol 215: 403 – 410.
dc.identifier.citedreferenceBattye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G.W. ( 2011 ) iMOSFLM: a new graphical interface for diffraction‐image processing with MOSFLM. Acta Crystallogr D 67: 271 – 281.
dc.identifier.citedreferenceBeauvieux, M.C., Roumes, H., Robert, N., Gin, H., Rigalleau, V., and Gallis, J.L. ( 2008 ) Butyrate ingestion improves hepatic glycogen storage in the re‐fed rat. BMC Physiol 8: 19.
dc.identifier.citedreferenceBerggren, A.M., Nyman, E.M., Lundquist, I., and Bjorck, I.M. ( 1996 ) Influence of orally and rectally administered propionate on cholesterol and glucose metabolism in obese rats. Br J Nutr 76: 287 – 294.
dc.identifier.citedreferenceBirt, D.F., Boylston, T., Hendrich, S., Jane, J.‐L., Hollis, J., Li, L., et al. ( 2013 ) Resistant starch: promise for improving human health. Adv Nutr 4: 587 – 601.
dc.identifier.citedreferenceBoets, E., Gomand, S., Deroover, V., Preston, L., Vermeulen, T.K., Preter, V., et al. ( 2017 ) Systemic availability and metabolism of colonic‐derived short‐chain fatty acids in healthy subjects—a stable isotope study. J Physiol 595: 541 – 555.
dc.identifier.citedreferenceBoraston, A.B., Healey, M., Klassen, J., Ficko‐Blean, E., Lammerts van Bueren, A., and Law, V. ( 2006 ) A structural and functional analysis of α‐glucan recognition by family 25 and 26 carbohydrate‐binding modules reveals a conserved mode of starch recognition. J Biol Chem 281: 587 – 598.
dc.identifier.citedreferenceBruzzese, E., Callegari, M.L., Raia, V., Viscovo, S., Scotto, R., Ferrari, S., et al. ( 2014 ) Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One 9: e87796.
dc.identifier.citedreferenceCameron, E.A., Maynard, M.A., Smith, C.J., Smith, T.J., Koropatkin, N.M., and Martens, E.C. ( 2012 ) Multidomain carbohydrate‐binding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J Biol Chem 287: 34614 – 34625.
dc.identifier.citedreferenceCockburn, D., and Svensson, B. ( 2016 ) Structure and functional roles of surface binding sites in amylolytic enzymes. In Understanding Enzymes: Function, Design, Engineering and Analysis. Allan Svendsen (ed). Singapore: Pan Stanford Publishing Pte. Ltd, pp. 267–295.
dc.identifier.citedreferenceCockburn, D., Nielsen, M.M., Christiansen, C., Andersen, J.M., Rannes, J.B., Blennow, A., and Svensson, B. ( 2015a ) Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int J Biol Macromol 75: 338 – 345.
dc.identifier.citedreferenceCockburn, D.W., Orlovsky, N.I., Foley, M.H., Kwiatkowski, K.J., Bahr, C.M., Maynard, M., et al. ( 2015b ) Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 95: 209 – 230.
dc.identifier.citedreferenceCockburn, D., Wilkens, C., and Svensson, B. ( 2017 ) Affinity electrophoresis for analysis of catalytic module‐carbohydrate interactions. Methods Mol Biol 1588: 119 – 127.
dc.identifier.citedreferenceDais, P., Vlachou, S., and Taravel, F.R. ( 2001 ) ( 13)C nuclear magnetic relaxation study of segmental dynamics of the heteropolysaccharide pullulan in dilute solutions. Biomacromolecules 2: 1137 – 1147.
dc.identifier.citedreferenceDamager, I., Engelsen, S.B., Blennow, A., Møller, B.L., and Motawia, M.S. ( 2010 ) First principles insight into the α‐glucan structures of starch: their synthesis, conformation, and hydration. Chem Rev 110: 2049 – 2080.
dc.identifier.citedreferenceDe Cruz, P., Kang, S., Wagner, J., Buckley, M., Sim, W.H., Prideaux, L., et al. ( 2015 ) Association between specific mucosa‐associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol 30: 268 – 278.
dc.identifier.citedreferenceDesai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., et al. ( 2016 ) A dietary fiber‐deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339 – 1353.e1321.
dc.identifier.citedreferenceDrozdetskiy, A., Cole, C., Procter, J., and Barton, G.J. ( 2015 ) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43: W389 – W394.
dc.identifier.citedreferenceEvans, P.R., and Murshudov, G.N. ( 2013 ) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69: 1204 – 1214.
dc.identifier.citedreferenceFoley, M.H., Cockburn, D.W., and Koropatkin, N.M. ( 2016 ) The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci 73: 2603 – 2617.
dc.identifier.citedreferenceForslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. ( 2015 ) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528: 262 – 266.
dc.identifier.citedreferenceFung, K.Y.C., Cosgrove, L., Lockett, T., Head, R., and Topping, D.L. ( 2012 ) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108: 820 – 831.
dc.identifier.citedreferenceGallant, D.J., Bouchet, Buleon, B.A., and Perez, S. ( 1992 ) Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 46: S3 – S16.
dc.identifier.citedreferenceGoldberg, R.N., Bell, D., Tewari, Y.B., and McLaughlin, M.A. ( 1991 ) Thermodynamics of hydrolysis of oligosaccharides. Biophys Chem 40: 69 – 76.
dc.identifier.citedreferenceGossling, J., and Slack, J.M. ( 1974 ) Predominant Gram‐positive bacteria in human feces: numbers, variety, and persistence. Infect Immun 9: 719 – 729.
dc.identifier.citedreferenceGuilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R., and Van Immerseel, F. ( 2010 ) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23: 366 – 384.
dc.identifier.citedreferenceHaro, C., Garcia‐Carpintero, S., Alcala‐Diaz, J.F., Gomez‐Delgado, F., Delgado‐Lista, J., Perez‐Martinez, P., et al. ( 2016 ) The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem 27: 27 – 31.
dc.identifier.citedreferenceHervé, C., Rogowski, A., Blake, A.W., Marcus, S.E., Gilbert, H.J., and Knox, J.P. ( 2010 ) Carbohydrate‐binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci USA 107: 15293 – 15298.
dc.identifier.citedreferenceImberty, A., Buléon, A., Tran, V., and Péerez, S. ( 1991 ) Recent advances in knowledge of starch structure. Starch‐Stärke 43: 375 – 384.
dc.identifier.citedreferenceJanecek, S., Majzlova, K., Svensson, B., and MacGregor, E.A. ( 2017 ) The starch‐binding domain family CBM41‐An in silico analysis of evolutionary relationships. Proteins 85: 1480 – 1492.
dc.identifier.citedreferenceJuge, N., Nøhr, J., Le Gal‐Coëffet, M.‐F., Kramhøft, B., Furniss, C.S.M., Planchot, V., et al. ( 2006 ) The activity of barley α‐amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochim Biophys Acta 1764: 275 – 284.
dc.identifier.citedreferenceKang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., and McSweeney, C.S. ( 2010 ) Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 16: 2034 – 2042.
dc.identifier.citedreferenceKoropatkin, N.M., Martens, E.C., Gordon, J.I., and Smith, T.J. ( 2008 ) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16: 1105 – 1115.
dc.identifier.citedreferenceLammerts van Bueren, A., and Boraston, A.B. ( 2007 ) The structural basis of α‐glucan recognition by a family 41 carbohydrate‐binding module from Thermotoga maritima. J Mol Biol 365: 555 – 560.
dc.identifier.citedreferenceLammerts van Bueren, A., Finn, R., Ausió, J., and Boraston, A.B. ( 2004a ) Alpha‐glucan recognition by a new family of carbohydrate‐binding modules found primarily in bacterial pathogens. Biochemistry 43: 15633 – 15642.
dc.identifier.citedreferenceLammerts Van Bueren, A., Finn, R., Ausió, J., and Boraston, A.B. ( 2004b ) α‐Glucan recognition by a new family of carbohydrate‐binding modules found primarily in bacterial pathogens. Biochemistry 43: 15633 – 15642.
dc.identifier.citedreferenceLeitch, E.C.M., Walker, A.W., Duncan, S.H., Holtrop, G., and Flint, H.J. ( 2007 ) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9: 667 – 679.
dc.identifier.citedreferenceLombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B. ( 2014 ) The carbohydrate‐active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490 – D495.
dc.identifier.citedreferenceMartínez, I., Kim, J., Duffy, P.R., Schlegel, V.L., Walter, J., and Heimesaat, M.M. ( 2010 ) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5: e15046.
dc.identifier.citedreferenceMartínez, I., Lattimer, J.M., Hubach, K.L., Case, J.A., Yang, J., Weber, C.G., et al. ( 2013 ) Gut microbiome composition is linked to whole grain‐induced immunological improvements. ISME J 7: 269 – 280.
dc.identifier.citedreferenceMcCleary, B.V., and Monaghan, D.A. ( 2002 ) Measurement of resistant starch. J AOAC Int 85: 665 – 675.
dc.identifier.citedreferenceMcCoy, A.J., Grosse‐Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. ( 2007 ) Phaser crystallographic software. J Appl Crystallogr 40: 658 – 674.
dc.identifier.citedreferenceMcNeil, N.I. ( 1984 ) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39: 338 – 342.
dc.identifier.citedreferenceMøller, M.S., Henriksen, A., and Svensson, B. ( 2016 ) Structure and function of α‐glucan debranching enzymes. Cell Mol Life Sci 73: 2619 – 2641.
dc.identifier.citedreferenceMotawia, M.S., Damager, I., Olsen, C.E., Møller, B.L., Engelsen, S.B., Hansen, S., et al. ( 2005 ) Comparative study of small linear and branched alpha‐glucans using size exclusion chromatography and static and dynamic light scattering. Biomacromolecules 6: 143 – 151.
dc.identifier.citedreferenceNastasi, C., Candela, M., Bonefeld, C.M., Geisler, C., Hansen, M., Krejsgaard, T., et al. ( 2015 ) The effect of short‐chain fatty acids on human monocyte‐derived dendritic cells. Sci Rep 5: 16148.
dc.identifier.citedreferenceNielsen, J.W., Kramhøft, B., Bozonnet, S., Abou Hachem, M., Stipp, S.L.S., Svensson, B., et al. ( 2012 ) Degradation of the starch components amylopectin and amylose by barley α‐amylase 1: role of surface binding site 2. Arch Biochem Biophys 528: 1 – 6.
dc.identifier.citedreferenceNielsen, M.M., Bozonnet, S., Seo, E.‐S., Mótyán, J.A., Andersen, J.M., Dilokpimol, A., et al. ( 2009 ) Two secondary carbohydrate binding sites on the surface of barley α‐amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry 48: 7686 – 7697.
dc.identifier.citedreferencePaldi, T., Levy, I., and Shoseyov, O. ( 2003 ) Glucoamylase starch‐binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J 372: 905 – 910.
dc.identifier.citedreferencePrajapati, V.D., Jani, G.K., and Khanda, S.M. ( 2013 ) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95: 540 – 549.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.