Show simple item record

OKâ 432 synergizes with IFNâ γ to confer dendritic cells with enhanced antitumor immunity

dc.contributor.authorPan, Ke
dc.contributor.authorLv, Lin
dc.contributor.authorZheng, Hai‐xia
dc.contributor.authorZhao, Jing‐jing
dc.contributor.authorPan, Qiu‐zhong
dc.contributor.authorLi, Jian‐jun
dc.contributor.authorWeng, De‐sheng
dc.contributor.authorWang, Dan‐dan
dc.contributor.authorJiang, Shan‐shan
dc.contributor.authorChang, Alfred E
dc.contributor.authorLi, Qiao
dc.contributor.authorXia, Jian‐chuan
dc.date.accessioned2018-02-05T16:36:35Z
dc.date.available2018-02-05T16:36:35Z
dc.date.issued2014-03
dc.identifier.citationPan, Ke; Lv, Lin; Zheng, Hai‐xia ; Zhao, Jing‐jing ; Pan, Qiu‐zhong ; Li, Jian‐jun ; Weng, De‐sheng ; Wang, Dan‐dan ; Jiang, Shan‐shan ; Chang, Alfred E; Li, Qiao; Xia, Jian‐chuan (2014). "OKâ 432 synergizes with IFNâ γ to confer dendritic cells with enhanced antitumor immunity." Immunology and Cell Biology 92(3): 263-274.
dc.identifier.issn0818-9641
dc.identifier.issn1440-1711
dc.identifier.urihttps://hdl.handle.net/2027.42/141581
dc.publisherWiley Periodicals, Inc.
dc.publisherNature Publishing Group
dc.subject.otherp38
dc.subject.otherNFâ κB
dc.subject.otherIFNâ γ
dc.subject.otherdendritic cells
dc.subject.otherantitumor immunity
dc.subject.otherOKâ 432
dc.titleOKâ 432 synergizes with IFNâ γ to confer dendritic cells with enhanced antitumor immunity
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141581/1/imcb201387-sup-0001.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141581/2/imcb201387.pdf
dc.identifier.doi10.1038/icb.2013.87
dc.identifier.sourceImmunology and Cell Biology
dc.identifier.citedreferencePiccioli D, Sbrana S, Melandri E, Valiante NM. Contactâ dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 2002; 195: 335 â 341.
dc.identifier.citedreferenceNakahara S, Tsunoda T, Baba T, Asabe S, Tahara H. Dendritic cells stimulated with a bacterial product, OKâ 432, efficiently induce cytotoxic T lymphocytes specific to tumor rejection peptide. Cancer Res 2003; 63: 4112 â 4118.
dc.identifier.citedreferenceAhmed SU, Okamoto M, Oshikawa T, Tano T, Sasai A, Kan S et al. Antiâ tumor effect of an intratumoral administration of dendritic cells in combination with TSâ 1, an oral fluoropyrimidine antiâ cancer drug, and OKâ 432, a streptococcal immunopotentiator: involvement of Tollâ like receptor 4. J Immunother 2004; 27: 432 â 441.
dc.identifier.citedreferenceOkamoto M, Furuichi S, Nishioka Y, Oshikawa T, Tano T, Ahmed SU et al. Expression of Tollâ like receptor 4 on dendritic cells is significant for anticancer effect of dendritic cellâ based immunotherapy in combination with an active component of OKâ 432, a streptococcal preparation. Cancer Res 2004; 64: 5461 â 5470.
dc.identifier.citedreferencePan K, Wang H, Liu WL, Zhang HK, Zhou J, Li JJ et al. The pivotal role of p38 and NFâ kappaB signal pathways in the maturation of human monocyteâ derived dendritic cells stimulated by streptococcal agent OKâ 432. Immunobiology 2009; 214: 350 â 358.
dc.identifier.citedreferencePan K, Zhao JJ, Wang H, Li JJ, Liang XT, Sun JC et al. Comparative analysis of cytotoxic T lymphocyte response induced by dendritic cells loaded with hepatocellular carcinomaâ derived RNA or cell lysate. Int J Biol Sci 2010; 6: 639 â 648.
dc.identifier.citedreferenceHovden AO, Karlsen M, Jonsson R, Aarstad HJ, Appel S. Maturation of monocyte derived dendritic cells with OK432 boosts ILâ 12p70 secretion and conveys strong Tâ cell responses. BMC Immunol 2011; 12: 2.
dc.identifier.citedreferenceBoccaccio C, Jacod S, Kaiser A, Boyer A, Abastado JP, Nardin A. Identification of a clinicalâ grade maturation factor for dendritic cells. J Immunother 2002; 25: 88 â 96.
dc.identifier.citedreferenceLee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da SI et al. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyteâ derived dendritic cells: implications for immunotherapy. Vaccine 2002; 20: A8 â A22.
dc.identifier.citedreferenceSnijders A, Kalinski P, Hilkens CM, Kapsenberg ML. Highâ level ILâ 12 production by human dendritic cells requires two signals. Int Immunol 1998; 10: 1593 â 1598.
dc.identifier.citedreferenceWatchmaker PB, Berk E, Muthuswamy R, Mailliard RB, Urban JA, Kirkwood JM et al. Independent regulation of chemokine responsiveness and cytolytic function versus CD8 + T cell expansion by dendritic cells. J Immunol 2010; 184: 591 â 597.
dc.identifier.citedreferenceLee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1â polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol 2008; 84: 319 â 325.
dc.identifier.citedreferenceWieckowski E, Chatta GS, Mailliard RM, Gooding W, Palucka K, Banchereau J et al. Typeâ 1 polarized dendritic cells loaded with apoptotic prostate cancer cells are potent inducers of CD8 (+) T cells against prostate cancer cells and defined prostate cancerâ specific epitopes. Prostate 2011; 71: 125 â 133.
dc.identifier.citedreferenceFernandez NC, Lozier A, Flament C, Ricciardiâ Castagnoli P, Bellet D, Suter M et al. Dendritic cells directly trigger NK cell functions: crosstalk relevant in innate antiâ tumor immune responses in vivo. Nat Med 1999; 5: 405 â 411.
dc.identifier.citedreferenceGerosa F, Baldaniâ Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 2002; 195: 327 â 333.
dc.identifier.citedreferenceOkamoto M, Kaji R, Kasetani H, Yoshida H, Moriya Y, Saito M et al. Purification and characterization of interferonâ gammaâ inducing molecule of OKâ 432, a penicillinâ killed streptococcal preparation, by monoclonal antibody neutralizing interferonâ gammaâ inducing activity of OKâ 432. J Immunother Emphasis Tumor Immunol 1993; 13: 232 â 242.
dc.identifier.citedreferenceOshikawa T, Okamoto M, Tano T, Sasai A, Kan S, Moriya Y et al. Antitumor effect of OKâ 432â derived DNA: one of the active constituents of OKâ 432, a streptococcal immunotherapeutic agent. J Immunother 2006; 29: 143 â 150.
dc.identifier.citedreferenceVieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P. Development of Th1â inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 2000; 164: 4507 â 4512.
dc.identifier.citedreferenceLiu J, Cao S, Herman LM, Ma X. Differential regulation of interleukin (IL)â 12 p35 and p40 gene expression and interferon (IFN)â gammaâ primed ILâ 12 production by IFN regulatory factor 1. J Exp Med 2003; 198: 1265 â 1276.
dc.identifier.citedreferenceHayes MP, Wang J, Norcross MA. Regulation of interleukinâ 12 expression in human monocytes: selective priming by interferonâ gamma of lipopolysaccharideâ inducible p35 and p40 genes. Blood 1995; 86: 646 â 650.
dc.identifier.citedreferenceSnijders A, Hilkens CM, van der Pouw Kraan TC, Engel M, Aarden LA, Kapsenberg ML. Regulation of bioactive ILâ 12 production in lipopolysaccharideâ stimulated human monocytes is determined by the expression of the p35 subunit. J Immunol 1996; 156: 1207 â 1212.
dc.identifier.citedreferenceMa X, Chow JM, Gri G, Carra G, Gerosa F, Wolf SF et al. The interleukinâ 12 p40 gene promoter is primed by interferonâ γ in monocytic cells. J Exp Med 1996; 183: 147 â 157.
dc.identifier.citedreferenceKalinski P, Mailliard RB, Giermasz A, Zeh HJ, Basse P, Bartlett DL et al. Natural killerâ dendritic cell crossâ talk in cancer immunotherapy. Expert Opin Biol Ther 2005; 5: 1303 â 1315.
dc.identifier.citedreferenceYamaguchi S, Tatsumi T, Takehara T, Sasakawa A, Hikita H, Kohga K et al. Dendritic cellâ based vaccines suppress metastatic liver tumor via activation of local innate and acquired immunity. Cancer Immunol Immunother 2008; 57: 1861 â 1869.
dc.identifier.citedreferenceFurumoto K, Arii S, Yamasaki S, Mizumoto M, Mori A, Inoue N et al. Spleenâ derived dendritic cells engineered to enhance interleukinâ 12 production elicit therapeutic antitumor immune responses. Int J Cancer 2000; 87: 665 â 672.
dc.identifier.citedreferenceArrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C. A critical role for p38 mitogenâ activated protein kinase in the maturation of human bloodâ derived dendritic cells induced by lipopolysaccharide, TNFâ alpha and contact sensitizers. J Immunol 2001; 166: 3837 â 3845.
dc.identifier.citedreferenceXie J, Qian J, Wang S, Freeman ME 3rd, Epstein J, Yi Q. Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogenâ activated protein kinase p38. J Immunol 2003; 171: 4792 â 4800.
dc.identifier.citedreferenceFlohé SB, Brüggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohé S et al. Human heat shock protein 60 induces maturation of dendritic cells versus a Th1â promoting phenotype. J Immunol 2003; 170: 2340 â 2348.
dc.identifier.citedreferenceOsawa Y, Iho S, Takauji R, Takatsuka H, Yamamoto S, Takahashi T et al. Collaborative action of NFâ kappaB and p38 MAPK is involved in CpG DNAâ induced IFNâ alpha and chemokine production in human plasmacytoid dendritic cells. J Immunol 2006; 177: 4841 â 4852.
dc.identifier.citedreferenceJongmans W, Tiemessen DM, van Vlodrop IJ, Mulders PF, Oosterwijk E. Th1â polarizing capacity of clinicalâ grade dendritic cells is triggered by Ribomunyl but is compromised by PGE2: the importance of maturation cocktails. J Immunother 2005; 28: 480 â 487.
dc.identifier.citedreferencePeng JC, Thomas R, Nielsen LK. Generation and maturation of dendritic cells for clinical application under serumâ free conditions. J Immunother 2005; 28: 599 â 609.
dc.identifier.citedreferenceBanchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296 â 306.
dc.identifier.citedreferenceSteinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449: 419 â 426.
dc.identifier.citedreferenceGilboa E. DCâ based cancer vaccines. J Clin Invest 2007; 117: 1195 â 1203.
dc.identifier.citedreferenceKalinski P. Dendritic cells in immunotherapy of established cancer: roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs 2009; 10: 526 â 535.
dc.identifier.citedreferenceKalinski P, Okada H. Polarized dendritic cells as cancer vaccines: directing effectorâ type T cells to tumors. Semin Immunol 2010; 22: 173 â 182.
dc.identifier.citedreferenceCools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells and effector T cells. J Leukoc Biol 2007; 82: 1 â 10.
dc.identifier.citedreferenceClark R, Kupper T. Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 2005; 125: 629 â 637.
dc.identifier.citedreferenceLangrish CL, McKenzie BS, Wilson NJ, de Waal MR, Kastelein RA, Cua DJ. ILâ 12 and ILâ 23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96 â 105.
dc.identifier.citedreferenceCurtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK et al. Inflammatory cytokines provide a third signal for activation of naive CD4 + and CD8 + T cells. J Immunol 1999; 162: 3256 â 3262.
dc.identifier.citedreferenceCurtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for Tâ Cell activation. Curr Opin Immunol 2010; 22: 333 â 340.
dc.identifier.citedreferenceCurtsinger JM, Johnson CM, Mescher MF. CD8 Tâ cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J Immunol 2003; 171: 5165 â 5171.
dc.identifier.citedreferenceMescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD et al. Signals required for programming effector and memory development by CD8 +â T cells. Immunol Rev 2006; 211: 81 â 92.
dc.identifier.citedreferenceXiao Z, Casey KA, Jameson SC, Curtsinger JM, Mescher MF. Programming for CD8â T cell memory development requires ILâ 12 or type I IFN. J Immunol 2009; 182: 2786 â 2794.
dc.identifier.citedreferenceFrankenberger B, Schendel DJ. Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol 2012; 91: 53 â 58.
dc.identifier.citedreferenceLangenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarizedâ T cells. Nat Immunol 2000; 1: 311 â 316.
dc.identifier.citedreferenceReis e Sousa C, Yap G, Schulz O, Rogers N, Schito M, Aliberti J et al. Paralysis of dendritic cell ILâ 12 production by microbial products prevents infectionâ induced immunopathology. Immunity 1999; 11: 637 â 647.
dc.identifier.citedreferenceRouas R, Lewalle P, El Ouriaghli F, Nowak B, Duvillier H, Martiat P. Poly (I:C) used for human dendritic cell maturation preserves their ability to secondarily secrete bioactive ILâ 12. Int Immunol 2004; 16: 767 â 773.
dc.identifier.citedreferenceTen Brinke A, Karsten ML, Dieker MC, Zwaginga JJ, van Ham SM. The clinical grade maturation cocktail monophosphoryl lipid A plus IFNâ γ generates monocyteâ derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine 2007; 25: 7145 â 7152.
dc.identifier.citedreferenceMailliard RB, Wankowiczâ Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML et al. αâ Typeâ 1 polarized dendritic cells: a novel immunization tool with optimized CTLâ inducing activity. Cancer Res 2004; 64: 5934 â 5937.
dc.identifier.citedreferenceOkamoto H, Shoin S, Koshimura S, Shimizu R. Studies on the anticancer and streptolysin Sâ forming abilities of hemolytic streptococci. Jpn J Microbiol 1967; 11: 323 â 336.
dc.identifier.citedreferenceItoh T, Ueda Y, Okugawa K, Fujiwara H, Fuji N, Yamashita T et al. Streptococcal preparation OKâ 432 promotes functional maturation of human monocyteâ derived dendritic cells. Cancer Immunol Immunother 2003; 52: 207 â 214.
dc.identifier.citedreferenceKuroki H, Morisaki T, Matsumoto K, Onishi H, Baba E, Tanaka M et al. Streptococcal preparation OKâ 432: a new maturation factor of monocyteâ derived dendritic cells for clinical use. Cancer Immunol Immunother 2003; 52: 561 â 568.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.