Show simple item record

Carbon‐Enriched Amorphous Hydrogenated Boron Carbide Films for Very‐Low‐k Interlayer Dielectrics

dc.contributor.authorNordell, Bradley J.
dc.contributor.authorNguyen, Thuong D.
dc.contributor.authorCaruso, Anthony N.
dc.contributor.authorPurohit, Sudhaunshu S.
dc.contributor.authorOyler, Nathan A.
dc.contributor.authorLanford, William A.
dc.contributor.authorGidley, David W.
dc.contributor.authorGaskins, John T.
dc.contributor.authorHopkins, Patrick E.
dc.contributor.authorHenry, Patrick
dc.contributor.authorKing, Sean W.
dc.contributor.authorPaquette, Michelle M.
dc.date.accessioned2018-02-05T16:42:18Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-12
dc.identifier.citationNordell, Bradley J.; Nguyen, Thuong D.; Caruso, Anthony N.; Purohit, Sudhaunshu S.; Oyler, Nathan A.; Lanford, William A.; Gidley, David W.; Gaskins, John T.; Hopkins, Patrick E.; Henry, Patrick; King, Sean W.; Paquette, Michelle M. (2017). "Carbon‐Enriched Amorphous Hydrogenated Boron Carbide Films for Very‐Low‐k Interlayer Dielectrics." Advanced Electronic Materials 3(12): n/a-n/a.
dc.identifier.issn2199-160X
dc.identifier.issn2199-160X
dc.identifier.urihttps://hdl.handle.net/2027.42/141869
dc.description.abstractA longstanding challenge in ultralarge‐scale integration has been the continued improvement in low‐dielectric‐constant (low‐k) interlayer dielectric materials and other specialized layers in back‐end‐of‐the‐line interconnect fabrication. Modeled after the success of carbon‐containing organosilicate materials, carbon‐enriched amorphous hydrogenated boron carbide (a‐BxC:Hy) films are grown by plasma‐enhanced chemical vapor deposition from ortho‐carborane and methane. These films contain more extraicosahedral sp3 hydrocarbon groups than nonenriched a‐BxC:Hy films, as revealed by FTIR and NMR spectroscopy, and also exhibit lower dielectric constants than their nonenriched counterparts, notably due to low densities combined with a low distortion and orientation contribution to the total polarizability. Films with dielectric constant as low as 2.5 are reported with excellent electrical stability (leakage current of 10−9 A cm−2 at 2 MV cm−1 and breakdown voltage of >6 MV cm−1), good thermal conductivity of 0.31 ± 0.03 W m−1 K−1, and high projected Young’s modulus of 12 ± 3 GPa. These properties rival those of leading SiOC:H materials, and position a‐BxC:Hy as an important complement to traditional Si‐based materials to meet the complex needs of next‐generation interconnect fabrication.Carbon‐enriched amorphous hydrogenated boron carbide films are demonstrated with dielectric constant (k) as low as 2.5—attributed to low densities combined with network‐rigidifying CH2 bridging groups—as well as excellent electrical, thermal, and mechanical properties, rivaling those of state‐of‐the‐art silicon‐based low‐k dielectric materials.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otheramorphous hydrogenated boron carbide
dc.subject.otherboron carbide
dc.subject.othercarboranes
dc.subject.otherlow‐k dielectric
dc.subject.otherplasma‐enhanced chemical vapor deposition
dc.titleCarbon‐Enriched Amorphous Hydrogenated Boron Carbide Films for Very‐Low‐k Interlayer Dielectrics
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141869/1/aelm201700116_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141869/2/aelm201700116.pdf
dc.identifier.doi10.1002/aelm.201700116
dc.identifier.sourceAdvanced Electronic Materials
dc.identifier.citedreferenceS. W. King, J. Bielefeld, G. Xu, W. A. Lanford, Y. Matsuda, R. H. Dauskardt, N. Kim, D. Hondongwa, L. Olasov, B. Daly, G. Stan, M. Liu, D. Dutta, D. Gidley, J. Non‐Cryst. Solids 2013, 379, 67.
dc.identifier.citedreferenceJ. Robertson, Mater. Sci. Eng., R 2002, 37, 129.
dc.identifier.citedreferenceB. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Ltd, Chichester, UK 2004.
dc.identifier.citedreferenceS. W. King, M. French, J. Bielefeld, W. A. Lanford, J. Non.‐Cryst. Solids 2011, 357, 2970.
dc.identifier.citedreferenceS. Kageyama, N. Matsuki, H. Fujiwara, J. Appl. Phys. 2013, 114, 233513.
dc.identifier.citedreferenceA. Grill, D. A. Neumayer, J. Appl. Phys. 2003, 94, 6697.
dc.identifier.citedreferenceK. Shirai, S. Emura, S. Gonda, Y. Kumashiro, J. Appl. Phys. 1995, 78, 3392.
dc.identifier.citedreferenceA. Annen, Thin Solid Films 1998, 312, 147.
dc.identifier.citedreferenceS.‐H. Lin, B. J. Feldman, Mater. Res. Soc. Symp. Proc. 1998, 517, 433.
dc.identifier.citedreferenceG. Cho, B. K. Yen, C. A. Klug, J. Appl. Phys. 2008, 104, 13531.
dc.identifier.citedreferenceN. Baccile, G. Laurent, F. Babonneau, F. Fayon, M.‐M. Titirici, M. Antonietti, J. Phys. Chem. C 2009, 113, 9644.
dc.identifier.citedreferenceK. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma, Z. S. Yanovitskaya, J. Appl. Phys. 2003, 93, 8793.
dc.identifier.citedreferenceP. A. Kohl, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 379.
dc.identifier.citedreferenceM. F. Thorpe, D. J. Jacobs, N. V. Chubynsky, A. J. Rader, in Rigidity Theory and Applications (Eds: M. F. Thorpe, P. M. Duxbury ), Kluwer Academic/Plenum Publishers, New York 2002, pp. 239 – 277.
dc.identifier.citedreferenceG. R. Palin, Plastics for Engineers: An Introductory Course, Pergamon Press, New York 1967.
dc.identifier.citedreferenceJ. Liu, D. Gan, C. Hu, M. Kiene, P. S. Ho, W. Volksen, R. D. Miller, Appl. Phys. Lett. 2002, 81, 4180.
dc.identifier.citedreferenceA. Delan, M. Rennau, S. E. Schulz, T. Gessner, Microelectron. Eng. 2003, 70, 280.
dc.identifier.citedreferenceM. T. Alam, R. A. Pulavarthy, J. Bielefeld, S. W. King, M. A. Haque, J. Electron. Mater. 2013, 43, 746.
dc.identifier.citedreferenceW. Zhou, S. Bailey, R. Sooryakumar, S. King, G. Xu, E. Mays, C. Ege, J. Bielefeld, J. Appl. Phys. 2011, 110, 43520.
dc.identifier.citedreferenceT. A. Pomorski, B. C. Bittel, P. M. Lenahan, E. Mays, C. Ege, J. Bielefeld, D. Michalak, S. W. King, J. Appl. Phys. 2014, 115, 234508.
dc.identifier.citedreferenceY.‐L. Cheng, J. Wu, T.‐J. Chiu, S.‐A. Chen, Y.‐L. Wang, J. Vac. Sci. Technol., B. 2011, 29, 31207.
dc.identifier.citedreferenceS. W. King, D. Jacob, D. Vanleuven, B. Colvin, J. Kelly, M. French, J. Bielefeld, D. Dutta, M. Liu, D. Gidley, ECS J. Solid State Sci. Technol. 2012, 1, N115.
dc.identifier.citedreferenceS. Dhungana, T. D. Nguyen, B. J. Nordell, A. N. Caruso, M. M. Paquette, G. Chollon, W. A. Lanford, K. Scharfenberger, D. Jacob, S. W. King, J. Vac. Sci. Technol., A 2017, 35, 21510.
dc.identifier.citedreferenceW. A. Lanford, M. Parenti, B. J. Nordell, M. M. Paquette, A. N. Caruso, M. Mäntymäki, J. Hämäläinen, M. Ritala, K. B. Klepper, V. Miikkulainen, O. Nilsen, W. Tenhaeff, N. Dudney, D. Koh, S. K. Banerjee, E. Mays, J. Bielefeld, S. W. King, Nucl. Instrum. Methods Phys. Res., Sect. B 2016, 371, 211.
dc.identifier.citedreferenceY. Lin, Y. Xiang, T. Y. Tsui, J. J. Vlassak, Acta Mater. 2008, 56, 4932.
dc.identifier.citedreferenceD. Koh, J.‐H. Yum, S. K. Banerjee, T. W. Hudnall, C. Bielawski, W. A. Lanford, B. L. French, M. French, P. Henry, H. Li, M. Kuhn, S. W. King, J. Vac. Sci. Technol., B. 2014, 32, 03D117.
dc.identifier.citedreferenceD. W. Gidley, H.‐G. Peng, R. S. Vallery, Annu. Rev. Mater. Res. 2006, 36, 49.
dc.identifier.citedreferenceD. G. Cahill, Rev. Sci. Instrum. 2004, 75, 5119.
dc.identifier.citedreferenceA. J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 2008, 79, 114902.
dc.identifier.citedreferenceP. E. Hopkins, J. R. Serrano, L. M. Phinney, S. P. Kearney, T. W. Grasser, C. T. Harris, J. Heat Transfer 2010, 132, 81302.
dc.identifier.citedreferenceAdvanced Interconnects for ULSI Technology (Eds: M. Baklanov, P. S. Ho, E. Zschech ), John Wiley & Sons, Ltd, West Sussex, UK 2012.
dc.identifier.citedreferenceInternational Technology Roadmap for Semiconductors, Interconnect Chapter, 2013.
dc.identifier.citedreferenceS. W. King, ECS J. Solid State Sci. Technol. 2015, 4, N3029.
dc.identifier.citedreferenceA. Grill, J. Vac. Sci. Technol., B. 2016, 34, 20801.
dc.identifier.citedreferenceK. Vanstreels, C. Wu, M. R. Baklanov, ECS J. Solid State Sci. Technol. 2014, 4, N3058.
dc.identifier.citedreferenceI. Stassen, M. Styles, G. Grenci, H. Van Gorp, W. Vanderlinden, S. De Feyter, P. Falcaro, D. De Vos, P. Vereecken, R. Ameloot, Nat. Mater. 2015, 15, 304.
dc.identifier.citedreferenceD. J. Michalak, J. M. Blackwell, J. M. Torres, A. Sengupta, L. E. Kreno, J. S. Clarke, D. Pantuso, J. Mater. Res. 2015, 30, 3363.
dc.identifier.citedreferenceT. Frot, W. Volksen, S. Purushothaman, R. Bruce, G. Dubois, Adv. Mater. 2011, 23, 2828.
dc.identifier.citedreferenceL. Zhang, J.‐F. de Marneffe, M. H. Heyne, S. Naumov, Y. Sun, A. Zotovich, Z. el Otell, F. Vajda, S. De Gendt, M. R. Baklanov, ECS J. Solid State Sci. Technol. 2014, 4, N3098.
dc.identifier.citedreferenceB. J. Nordell, T. D. Nguyen, C. L. Keck, S. Dhungana, A. N. Caruso, W. A. Lanford, J. T. Gaskins, P. E. Hopkins, D. R. Merrill, D. C. Johnson, L. L. Ross, P. Henry, S. W. King, M. M. Paquette, Adv. Electron. Mater. 2016, 2, 1600073.
dc.identifier.citedreferenceA. Grill, S. M. Gates, T. E. Ryan, S. V. Nguyen, D. Priyadarshini, Appl. Phys. Rev. 2014, 1, 11306.
dc.identifier.citedreferenceB. J. Nordell, S. Karki, T. D. Nguyen, P. Rulis, A. N. Caruso, S. S. Purohit, H. Li, S. W. King, D. Dutta, D. Gidley, W. A. Lanford, M. M. Paquette, J. Appl. Phys. 2015, 118, 35703.
dc.identifier.citedreferenceB. J. Nordell, C. L. Keck, T. D. Nguyen, A. N. Caruso, S. S. Purohit, W. A. Lanford, D. Dutta, D. Gidley, P. Henry, S. W. King, M. M. Paquette, Mater. Chem. Phys. 2016, 173, 268.
dc.identifier.citedreferenceB. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Perovic, G. A. Ozin, Mater. Today 2006, 9, 22.
dc.identifier.citedreferenceM. S. Driver, M. M. Paquette, S. Karki, B. J. Nordell, A. N. Caruso, J. Phys.: Condens. Matter 2012, 24, 445001.
dc.identifier.citedreferenceM. M. Paquette, W. Li, M. S. Driver, S. Karki, A. N. Caruso, N. A. Oyler, J. Phys.: Condens. Matter 2011, 23, 435002.
dc.identifier.citedreferenceM. Saß, A. Annen, W. Jacob, J. Appl. Phys. 1997, 82, 1905.
dc.identifier.citedreferenceR. Paroli, N. Kawai, G. Lord, Inorg. Chem. 1989, 28, 1819.
dc.identifier.citedreferenceT. Heitz, B. Drévillon, C. Godet, J. Bourée, Phys. Rev. B 1998, 58, 13957.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.