Show simple item record

Actinobacillus actinomycetemcomitans Lipopolysaccharide‐Mediated Experimental Bone Loss Model for Aggressive Periodontitis

dc.contributor.authorRogers, Jill E.
dc.contributor.authorLi, Fei
dc.contributor.authorCoatney, Derek D.
dc.contributor.authorRossa, Carlos
dc.contributor.authorBronson, Paul
dc.contributor.authorKrieder, Jaclynn M.
dc.contributor.authorGiannobile, William V.
dc.contributor.authorKirkwood, Keith L.
dc.date.accessioned2018-02-05T16:42:59Z
dc.date.available2018-02-05T16:42:59Z
dc.date.issued2007-03
dc.identifier.citationRogers, Jill E.; Li, Fei; Coatney, Derek D.; Rossa, Carlos; Bronson, Paul; Krieder, Jaclynn M.; Giannobile, William V.; Kirkwood, Keith L. (2007). "Actinobacillus actinomycetemcomitans Lipopolysaccharide‐Mediated Experimental Bone Loss Model for Aggressive Periodontitis." Journal of Periodontology 78(3): 550-558.
dc.identifier.issn0022-3492
dc.identifier.issn1943-3670
dc.identifier.urihttps://hdl.handle.net/2027.42/141900
dc.publisherAmerican Academy of Periodontology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlipopolysaccharide
dc.subject.otherinflammation
dc.subject.othercytokines
dc.subject.otherperiodontal diseases
dc.subject.otherActinobacillus actinomycetemcomitans
dc.titleActinobacillus actinomycetemcomitans Lipopolysaccharide‐Mediated Experimental Bone Loss Model for Aggressive Periodontitis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Biomedical Engineering, College of Engineering, University of Michigan.
dc.contributor.affiliationumOrthopedics Research Laboratory, University of Michigan.
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI.
dc.contributor.affiliationotherDepartment of Oral Biology, University at Buffalo, Buffalo, NY.
dc.contributor.affiliationotherDepartment of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of São Paulo, Araraquara, SP, Brazil.
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/141900/1/jper0550.pdf
dc.identifier.doi10.1902/jop.2007.060321
dc.identifier.sourceJournal of Periodontology
dc.identifier.citedreferenceCalifano J, Schenkein H, et al. Immunodominant antigens of Actinobacillus actinomycetemcomitans serotype b in early‐onset periodontitis patients. Oral Microbiol Immunol 1992; 7: 65 – 70.
dc.identifier.citedreferenceLlavaneras A, Golub LM, Rifkin BR, et al. CMT‐8/clodronate combination therapy synergistically inhibits alveolar bone loss in LPS‐induced periodontitis. Ann N Y Acad Sci 1999; 878: 671 – 674.
dc.identifier.citedreferenceBaker PJ. The role of immune responses in bone loss during periodontal disease. Microbes Infect 2000; 2: 1181 – 1192.
dc.identifier.citedreferencePark C, Abramson Z, Taba M, et al. Three‐dimensional micro‐computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 2007; 78: 273 – 281.
dc.identifier.citedreferenceRamamurthy NS, Xu JW, Bird J, et al. Inhibition of alveolar bone loss by matrix metalloproteinase inhibitors in experimental periodontal disease. J Periodontal Res 2002; 37: 1 – 7.
dc.identifier.citedreferenceLlavaneras A, Ramamurthy NS, Heikkila P, et al. A combination of a chemically modified doxycycline and a bisphosphonate synergistically inhibits endotoxin‐induced periodontal breakdown in rats. J Periodontol 2001; 72: 1069 – 1077.
dc.identifier.citedreferenceDumitrescu AL, Abd‐El‐Aleem S, Morales‐Aza B, Donaldson LF. A model of periodontitis in the rat: Effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 2004; 31: 596 – 603.
dc.identifier.citedreferenceGarlet GP, Avila‐Campos MJ, Milanezi CM, Ferreira BR, Silva JS. Actinobacillus actinomycetemcomitans ‐induced periodontal disease in mice: Patterns of cytokine, chemokine, and chemokine receptor expression and leukocyte migration. Microbes Infect 2005; 7: 738 – 747.
dc.identifier.citedreferenceGarlet GP, Cardoso CR, Silva TA, et al. Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors. Oral Microbiol Immunol 2006; 21: 12 – 20.
dc.identifier.citedreferenceAlbandar J, Olsen I, Gjermo Pl, et al. Associations between six DNA probe‐detected periodontal bacteria and alveolar bone loss and other clinical signs of periodontitis. Acta Odontol Scand 1990; 48: 415 – 423.
dc.identifier.citedreferenceGenco R, Zambon J, Murray PA. Serum and gingival fluid antibodies as adjuncts in the diagnosis of Actinobacillus actinomycetemcomitans ‐associated periodontal disease. J Periodontol 1985; 56: 41 – 50.
dc.identifier.citedreferenceChristersson L, Slots J, et al. Microbiological and clinical effects of surgical treatment of localized juvenile periodontitis. J Clin Periodontol 1985; 12: 465 – 476.
dc.identifier.citedreferenceZambon J, Slots J, et al. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease. Infect Immun 1983; 41: 19 – 27.
dc.identifier.citedreferenceYang H, Asikainen S, et al. Relationship of Actinobacillus actinomycetemcomitans serotype b to aggressive periodontitis: Frequency in pure cultured isolates. J Periodontol 2004; 75: 592 – 599.
dc.identifier.citedreferenceCalifano J, Schenkein H, et al. Immunodominant antigen of Actinobacillus actinomycetemcomitans Y4 in high‐responder patients. Infect Immun 1989; 57: 1582 – 1589.
dc.identifier.citedreferenceWilson ME, Hamilton RG. Immunoglobulin G subclass response of localized juvenile periodontitis patients to Actinobacillus actinomycetemcomitans Y4 lipopolysaccharide. Infect Immun 1992; 60: 1806 – 1812.
dc.identifier.citedreferenceDarveau R, Hancock R. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol 1983; 155: 831‐838.
dc.identifier.citedreferenceWestphal O, Jann K. Bacterial lipopolysaccharide extraction with phenol water and further application of these procedures. Methods Carbohydr Chem 1965; 5: 83 – 91.
dc.identifier.citedreferenceDarveau RP, Pham TT, Lemley K, et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll‐like receptors 2 and 4. Infect Immun 2004; 72: 5041 – 5051.
dc.identifier.citedreferenceChang K, Ramamurthy NS, McNamara T. Tetracyclines inhibit Porphyromonas gingivalis ‐induced alveolar bone loss in rats by a non‐antimicrobial mechanism. J Periodontal Res 1994; 29: 242 – 249.
dc.identifier.citedreferenceKarimbux NY, Ramamurthy NS, Golub LM, Nishimura I. The expression of collagen I and XII mRNAs in Porphyromonas gingivalis ‐induced periodontitis in rats: The effect of doxycycline and chemically modified tetracycline. J Periodontol 1998; 69: 34 – 40.
dc.identifier.citedreferenceGuo L, Lim KB, Gunn JS, et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP‐phoQ. Science 1997; 276: 250 – 253.
dc.identifier.citedreferenceRoux D, Meunier C, Woda A. A biometric analysis in the rat of the horizontal component of physiological tooth migration and its response to altered occlusal function. Arch Oral Biol 1993; 38: 957 – 963.
dc.identifier.citedreferenceGraves DT, Liu R, Alikhani M, Al‐Mashat H, Trackman PC. Diabetes‐enhanced inflammation and apoptosis – Impact on periodontal pathology. J Dent Res 2006; 85: 15 – 21.
dc.identifier.citedreferenceRossa C Jr., Liu M, Patil C, Kirkwood KL. MKK3/6‐p38 MAPK negatively regulates murine MMP‐13 gene expression induced by IL‐1beta and TNF‐alpha in immortalized periodontal ligament fibroblasts. Matrix Biol 2005; 24: 478 – 488.
dc.identifier.citedreferencePatil C, Rossa C Jr., Kirkwood KL. A. actinomycetemcomitans LPS induces IL‐6 expression through multiple MAPK pathways in periodontal ligament fibroblasts. Oral Microbiol Immunol 2006; 21: 392 – 398.
dc.identifier.citedreferenceHong CY, Lin SK, Kok SH, et al. The role of lipopolysaccharide in infectious bone resorption of periapical lesion. J Oral Pathol Med 2004; 33: 162 – 169.
dc.identifier.citedreferenceSchytte Blix IJ, Helgeland K, Hvattum E, Lyberg T. Lipopolysaccharide from Actinobacillus actinomycetemcomitans stimulates production of interleukin‐1beta, tumor necrosis factor‐alpha, interleukin‐6 and interleukin‐1 receptor antagonist in human whole blood. J Periodontal Res 1999; 34: 34 – 40.
dc.identifier.citedreferenceRossa C Jr., Ehman K, Liu M, Patil C, Kirkwood K. MKK3/6‐p38 MAPK signaling is required for IL‐1beta and TNF‐alpha‐induced RANKL expression in bone marrow stromal cells. J Interferon Cytokine Res 2006; 26: 719 – 729.
dc.identifier.citedreferenceLundgren D, Magnusson B, Lindhe J. Connective tissue alterations in gingivae of rats treated with estrogen and progesterone. Odontol Revy 1973; 24: 49 – 58.
dc.identifier.citedreferenceChen J, Haley RL, et al. Estradiol protects against ethanol‐induced bone loss by inhibiting upregulation of RANKL in osteoblasts. J Pharmacol Exp Ther 2006; 319: 1182 – 1190.
dc.identifier.citedreferenceAkira S, Hemmi H. Recognition of pathogen‐associated molecular patterns by TLR family. Immunol Lett 2003; 85: 85 – 95.
dc.identifier.citedreferenceGenco CA, Van Dyke T, Amar S. Animal models for Porphyromonas gingivalis ‐mediated periodontal disease. Trends Microbiol 1998; 6: 444 – 449.
dc.identifier.citedreferenceListgarten MA, Wong MY, Lai CH. Detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Bacteroides forsythus in an A. actinomycetemcomitans ‐positive patient population. J Periodontol 1995; 66: 158 – 164.
dc.identifier.citedreferenceLee HJ, Kang IK, Chung CP, Choi SM. The subgingival microflora and gingival crevicular fluid cytokines in refractory periodontitis. J Clin Periodontol 1995; 22: 885 – 890.
dc.identifier.citedreferenceLeng SX, Elias JA. Interleukin‐11 inhibits macrophage interleukin‐12 production. J Immunol 1997; 159: 2161 – 2168.
dc.identifier.citedreferenceChen C, Chang K, Huang J, Huang J, Tsai C. Interleukin‐6 production by human gingival fibroblasts following stimulation with Actinobacillus actinomycetemcomitans. Kaohsiung J Med Sci 1998; 14: 367 – 378.
dc.identifier.citedreferenceTsai C, Ho Y, Chen C. Levels of interleukin‐1 beta and interleukin‐8 in gingival crevicular fluids in adult periodontitis. J Periodontol 1995; 66: 852 – 859.
dc.identifier.citedreferenceRoux S, Orcel P. Bone loss. Factors that regulate osteoclast differentiation: An update. Arthritis Res 2000; 2: 451 – 456.
dc.identifier.citedreferenceMahamed DA, Marleau A, Alnaeeli M, et al. G(‐) anaerobes‐reactive CD4+ T‐cells trigger RANKL‐mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes 2005; 54: 1477 – 1486.
dc.identifier.citedreferenceTeng YT, Nguyen H, Gao X, et al. Functional human T‐cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000; 106: R59 – R67.
dc.identifier.citedreferenceEjeil AL, Gaultier F, Igondjo‐Tchen S, et al. Are cytokines linked to collagen breakdown during periodontal disease progression? J Periodontol 2003; 74: 196 – 201.
dc.identifier.citedreferenceGamonal J, Acevedo A, Bascones A, Jorge O, Silva A. Levels of interleukin‐1 beta, ‐8, and ‐10 and RANTES in gingival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment. J Periodontol 2000; 71: 1535 – 1545.
dc.identifier.citedreferenceGeivelis M, Turner DW, Pederson ED, Lamberts BL. Measurements of interleukin‐6 in gingival crevicular fluid from adults with destructive periodontal disease. J Periodontol 1993; 64: 980 – 983.
dc.identifier.citedreferenceGorska R, Gregorek H, Kowalski J, Laskus‐Perendyk A, Syczewska M, Madalinski K. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J Clin Periodontol 2003; 30: 1046 – 1052.
dc.identifier.citedreferenceStashenko P, Jandinski JJ, Fujiyoshi P, Rynar J, Socransky SS. Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol 1991; 62: 504 – 509.
dc.identifier.citedreferenceEngebretson SP, Hey‐Hadavi J, Ehrhardt FJ, et al. Gingival crevicular fluid levels of interleukin‐1beta and glycemic control in patients with chronic periodontitis and type 2 diabetes. J Periodontol 2004; 75: 1203 – 1208.
dc.identifier.citedreferenceKlausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: A review article. J Periodontol 1991; 62: 59 – 73.
dc.identifier.citedreferenceRobinson M, Hart D, Pigott G. The effects of diet on the incidence of periodontitis in rats. Lab Anim 1991; 25: 247 – 253.
dc.identifier.citedreferenceFiehn N, Klausen B, Evans R. Periodontal bone loss in Porphyromonas gingivalis ‐infected specific pathogen‐free rats after preinoculation with endogenous Streptococcus sanguis. J Periodontal Res 1992; 27: 609 – 614.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.