Show simple item record

Leukotriene B4 mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acidâ stimulated neutrophils

dc.contributor.authorSerezani, Carlos H. C.
dc.contributor.authorAronoff, David M.
dc.contributor.authorJancar, Sonia
dc.contributor.authorPeters‐golden, Marc
dc.date.accessioned2018-02-05T16:46:32Z
dc.date.available2018-02-05T16:46:32Z
dc.date.issued2005-10
dc.identifier.citationSerezani, Carlos H. C.; Aronoff, David M.; Jancar, Sonia; Peters‐golden, Marc (2005). "Leukotriene B4 mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acidâ stimulated neutrophils." Journal of Leukocyte Biology 78(4): 976-984.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/142119
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPMN
dc.subject.otherlipid mediators
dc.subject.otherNADPH oxidase
dc.subject.otherBLT1
dc.subject.otherPUFAs
dc.titleLeukotriene B4 mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acidâ stimulated neutrophils
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumPulmonary and Critical Care Medicine, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor; and
dc.contributor.affiliationotherDivisions of Infectious Diseases, Ann Arbor
dc.contributor.affiliationotherDepartment of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, Brazil
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142119/1/jlb0976.pdf
dc.identifier.doi10.1189/jlb.1004587
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceBoveris, A., Oshino, N., Chance, B. ( 1972 ) The cellular production of hydrogen peroxide. Biochem. J. 128, 617 â 630.
dc.identifier.citedreferencePerkins, R. S., Lindsay, M. A., Barnes, P. J., Giembycz, M. A. ( 1995 ) Early signaling events implicated in leukotriene B4â induced activation of the NADPH oxidase in eosinophils: role of Ca2+, protein kinase C and phospholipases C and D. Biochem. J. 310 ( Pt. 3 ), 795 â 806.
dc.identifier.citedreferenceSerezani, C. H., Aronoff, D. M., Jancar, S., Mancuso, P., Petersâ Golden, M. ( 2005 ) Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood, Epub ahead of print.
dc.identifier.citedreferenceWijkander, J., O’Flaherty, J. T., Nixon, A. B., Wykle, R. L. ( 1995 ) 5â Lipoxygenase products modulate the activity of the 85â kDa phospholipase A2 in human neutrophils. J. Biol. Chem. 270, 26543 â 26549.
dc.identifier.citedreferenceIto, N., Yokomizo, T., Sasaki, T., Kurosu, H., Penninger, J., Kanaho, Y., Katada, T., Hanaoka, K., Shimizu, T. ( 2002 ) Requirement of phosphatidylinositol 3â kinase activation and calcium influx for leukotriene B4â induced enzyme release. J. Biol. Chem. 277, 44898 â 44904.
dc.identifier.citedreferenceBurkert, E., Szellas, D., Radmark, O., Steinhilber, D., Werz, O. ( 2003 ) Cell typeâ dependent activation of 5â lipoxygenase by arachidonic acid. J. Leukoc. Biol. 73, 191 â 200.
dc.identifier.citedreferenceO’Flaherty, J. T., Redman, J. F., Jacobson, D. P. ( 1990 ) Mechanisms involved in the bidirectional effects of protein kinase C activators on neutrophil responses to leukotriene B4. J. Immunol. 144, 1909 â 1913.
dc.identifier.citedreferenceChen, X. S., Sheller, J. R., Johnson, E. N., Funk, C. D. ( 1994 ) Role of leukotrienes revealed by targeted disruption of the 5â lipoxygenase gene. Nature 372, 179 â 182.
dc.identifier.citedreferenceCanetti, C., Hu, B., Curtis, J. L., Petersâ Golden, M. ( 2003 ) Syk activation is a leukotriene B4â regulated event involved in macrophage phagocytosis of IgGâ coated targets but not apoptotic cells. Blood 102, 1877 â 1883.
dc.identifier.citedreferencePompeia, C., Curyâ Boaventura, M. F., Curi, R. ( 2003 ) Arachidonic acid triggers an oxidative burst in leukocytes. Braz. J. Med. Biol. Res. 36, 1549 â 1560.
dc.identifier.citedreferenceBoveris, A. ( 1977 ) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv. Exp. Med. Biol. 78, 67 â 82.
dc.identifier.citedreferenceDana, R., Malech, H. L., Levy, R. ( 1994 ) The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem. J. 297 ( Pt. 1 ), 217 â 223.
dc.identifier.citedreferenceLarfars, G., Lantoine, F., Devynck, M. A., Palmblad, J., Gyllenhammar, H. ( 1999 ) Activation of nitric oxide release and oxidative metabolism by leukotrienes B4, C4, and D4 in human polymorphonuclear leukocytes. Blood 93, 1399 â 1405.
dc.identifier.citedreferenceBabior, B.M. ( 1999 ) NADPH oxidase: an update. Blood 93, 1464 â 1476.
dc.identifier.citedreferenceZaloga, G. P., Marik, P. ( 2001 ) Lipid modulation and systemic inflammation. Crit. Care Clin. 17, 201 â 217.
dc.identifier.citedreferencePompeia, C., Lopes, L. R., Miyasaka, C. K., Procopio, J., Sannomiya, P., Curi, R. ( 2000 ) Effect of fatty acids on leukocyte function. Braz. J. Med. Biol. Res. 33, 1255 â 1268.
dc.identifier.citedreferencePetersâ Golden, M., Brock, T. G. ( 2003 ) 5â Lipoxygenase and FLAP. Prostaglandins Leukot. Essent. Fatty Acids 69, 99 â 109.
dc.identifier.citedreferenceThannickal, V. J., Fanburg, B. L. ( 2000 ) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005 â L1028.
dc.identifier.citedreferenceCorey, S. J., Rosoff, P. M. ( 1991 ) Unsaturated fatty acids and lipoxygenase products regulate phagocytic NADPH oxidase activity by a nondetergent mechanism. J. Lab. Clin. Med. 118, 343 â 351.
dc.identifier.citedreferenceAlzoghaibi, M. A., Walsh, S. W., Willey, A., Yager, D. R., Fowler III, A. A., Graham, M. F. ( 2004 ) Linoleic acid induces interleukinâ 8 production by Crohn’s human intestinal smooth muscle cells via arachidonic acid metabolites. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G528 â G537.
dc.identifier.citedreferenceMaridonneauâ Parini, I., Tringale, S. M., Tauber, A. I. ( 1986 ) Identification of distinct activation pathways of the human neutrophil NADPHâ oxidase. J. Immunol. 137, 2925 â 2929.
dc.identifier.citedreferenceOzaki, Y., Ohashi, T., Niwa, Y. ( 1986 ) A comparative study on the effects of inhibitors of the lipoxygenase pathway on neutrophil function. Inhibitory effects on neutrophil function may not be attributed to inhibition of the lipoxygenase pathway. Biochem. Pharmacol. 35, 3481 â 3488.
dc.identifier.citedreferenceMancuso, P., Nanaâ Sinkam, P., Petersâ Golden, M. ( 2001 ) Leukotriene B4 augments neutrophil phagocytosis of Klebsiella pneumoniae. Infect. Immun. 69, 2011 â 2016.
dc.identifier.citedreferencePalmblad, J., Gyllenhammar, H., Lindgren, J. A., Malmsten, C. L. ( 1984 ) Effects of leukotrienes and fâ Metâ Leuâ Phe on oxidative metabolism of neutrophils and eosinophils. J. Immunol. 132, 3041 â 3045.
dc.identifier.citedreferenceStulnig, T. M. ( 2003 ) Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int. Arch. Allergy Immunol. 132, 310 â 321.
dc.identifier.citedreferenceMcPhail, L. C., Clayton, C. C., Snyderman, R. ( 1984 ) A potential second messenger role for unsaturated fatty acids: activation of Ca2+â dependent protein kinase. Science 224, 622 â 625.
dc.identifier.citedreferenceMcPhail, L. C., Clayton, C. C., Snyderman, R. ( 1984 ) A potential second messenger role for arachidonic acid: activation of Ca2+â dependent protein kinase. Trans. Assoc. Am. Physicians 97, 222 â 231.
dc.identifier.citedreferenceSakata, A., Ida, E., Tominaga, M., Onoue, K. ( 1987 ) Arachidonic acid acts as an intracellular activator of NADPHâ oxidase in Fc γ receptorâ mediated superoxide generation in macrophages. J. Immunol. 138, 4353 â 4359.
dc.identifier.citedreferenceSeifert, R., Schultz, G. ( 1987 ) Fattyâ acidâ induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides. Eur. J. Biochem. 162, 563 â 569.
dc.identifier.citedreferenceChang, L. C., Wang, J. P. ( 2001 ) Signal transduction pathways for activation of extracellular signalâ regulated kinase by arachidonic acid in rat neutrophils. J. Leukoc. Biol. 69, 659 â 665.
dc.identifier.citedreferenceCapodici, C., Pillinger, M. H., Han, G., Philips, M. R., Weissmann, G. ( 1998 ) Integrinâ dependent homotypic adhesion of neutrophils. Arachidonic acid activates Rafâ 1/Mek/Erk via a 5â lipoxygenaseâ dependent pathway. J. Clin. Invest. 102, 165 â 175.
dc.identifier.citedreferenceWoo, C. H., Kim, B. C., Kim, K. W., Yoo, M. H., Eom, Y. W., Choi, E. J., Na, D. S., Kim, J. H. ( 2000 ) Role of cytosolic phospholipase A(2) as a downstream mediator of Rac in the signaling pathway to JNK stimulation. Biochem. Biophys. Res. Commun. 268, 231 â 236.
dc.identifier.citedreferenceLiu, J., Liu, Z., Chuai, S., Shen, X. ( 2003 ) Phospholipase C and phosphatidylinositol 3â kinase signaling are involved in the exogenous arachidonic acidâ stimulated respiratory burst in human neutrophils. J. Leukoc. Biol. 74, 428 â 437.
dc.identifier.citedreferenceCamandola, S., Leonarduzzi, G., Musso, T., Varesio, L., Carini, R., Scavazza, A., Chiarpotto, E., Baeuerle, P. A., Poli, G. ( 1996 ) Nuclear factor κB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 229, 643 â 647.
dc.identifier.citedreferenceO’Flaherty, J. T., Chadwell, B. A., Kearns, M. W., Sergeant, S., Daniel, L. W. ( 2001 ) Protein kinases C translocation responses to low concentrations of arachidonic acid. J. Biol. Chem. 276, 24743 â 24750.
dc.identifier.citedreferenceCurnutte, J. T. ( 1985 ) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cellâ free system. J. Clin. Invest. 75, 1740 â 1743.
dc.identifier.citedreferenceClark, R. A., Leidal, K. G., Pearson, D. W., Nauseef, W. M. ( 1987 ) NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonateâ activatable superoxideâ generating system. J. Biol. Chem. 262, 4065 â 4074.
dc.identifier.citedreferenceCox, J. A., Jeng, A. Y., Blumberg, P. M., Tauber, A. I. ( 1987 ) Comparison of subcellular activation of the human neutrophil NADPHâ oxidase by arachidonic acid, sodium dodecyl sulfate (SDS), and phorbol myristate acetate (PMA). J. Immunol. 138, 1884 â 1888.
dc.identifier.citedreferenceSteinbeck, M. J., Robinson, J. M., Karnovsky, M. J. ( 1991 ) Activation of the neutrophil NADPHâ oxidase by free fatty acids requires the ionized carboxyl group and partitioning into membrane lipid. J. Leukoc. Biol. 49, 360 â 368.
dc.identifier.citedreferenceRubinek, T., Levy, R. ( 1993 ) Arachidonic acid increases the activity of the assembled NADPH oxidase in cytoplasmic membranes and endosomes. Biochim. Biophys. Acta 1176, 51 â 58.
dc.identifier.citedreferenceKadriâ Hassani, N., Leger, C. L., Descomps, B. ( 1995 ) The fatty acid bimodal action on superoxide anion production by human adherent monocytes under phorbol 12â myristate 13â acetate or diacylglycerol activation can be explained by the modulation of protein kinase C and p47phox translocation. J. Biol. Chem. 270, 15111 â 15118.
dc.identifier.citedreferenceDana, R., Leto, T. L., Malech, H. L., Levy, R. ( 1998 ) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J. Biol. Chem. 273, 441 â 445.
dc.identifier.citedreferenceZhao, X., Bey, E. A., Wientjes, F. B., Cathcart, M. K. ( 2002 ) Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox). J. Biol. Chem. 277, 25385 â 25392.
dc.identifier.citedreferenceBabior, B. M., Lambeth, J. D., Nauseef, W. ( 2002 ) The neutrophil NADPH oxidase. Arch. Biochem. Biophys. 397, 342 â 344.
dc.identifier.citedreferencePalicz, A., Foubert, T. R., Jesaitis, A. J., Marodi, L., McPhail, L. C. ( 2001 ) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J. Biol. Chem. 276, 3090 â 3097.
dc.identifier.citedreferenceHenderson, L. M., Chappell, J. B. ( 1992 ) The NADPHâ oxidaseâ associated H+ channel is opened by arachidonate. Biochem. J. 283 ( Pt. 1 ), 171 â 175.
dc.identifier.citedreferenceLowenthal, A., Levy, R. ( 1999 ) Essential requirement of cytosolic phospholipase A(2) for activation of the H(+) channel in phagocyteâ like cells. J. Biol. Chem. 274, 21603 â 21608.
dc.identifier.citedreferenceSellmayer, A., Obermeier, H., Danesch, U., Aepfelbacher, M., Weber, P. C. ( 1996 ) Arachidonic acid increases activation of NADPH oxidase in monocytic U937 cells by accelerated translocation of p47â phox and costimulation of protein kinase C. Cell. Signal. 8, 397 â 402.
dc.identifier.citedreferenceSteinbeck, M. J., Hegg, G. G., Karnovsky, M. J. ( 1991 ) Arachidonate activation of the neutrophil NADPHâ oxidase. Synergistic effects of protein phosphatase inhibitors compared with protein kinase activators. J. Biol. Chem. 266, 16336 â 16342.
dc.identifier.citedreferenceHenderson, L. M., Banting, G., Chappell, J. B. ( 1995 ) The arachidonateactivable, NADPH oxidaseâ associated H+ channel. Evidence that gp91â phox functions as an essential part of the channel. J. Biol. Chem. 270, 5909 â 5916.
dc.identifier.citedreferenceKapus, A., Romanek, R., Grinstein, S. ( 1994 ) Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. J. Biol. Chem. 269, 4736 â 4745.
dc.identifier.citedreferenceSoberman, R. J., Harper, T. W., Betteridge, D., Lewis, R. A., Austen, K. F. ( 1985 ) Characterization and separation of the arachidonic acid 5â lipoxygenase and linoleic acid Ï â 6 lipoxygenase (arachidonic acid 15â lipoxygenase) of human polymorphonuclear leukocytes. J. Biol. Chem. 260, 4508 â 4515.
dc.identifier.citedreferenceLindsay, M. A., Perkins, R. S., Barnes, P. J., Giembycz, M. A. ( 1998 ) Leukotriene B4 activates the NADPH oxidase in eosinophils by a pertussis toxinâ sensitive mechanism that is largely independent of arachidonic acid mobilization. J. Immunol. 160, 4526 â 4534.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.