Show simple item record

Family‐ and population‐level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae)

dc.contributor.authorJenkins Klus, Dawn
dc.contributor.authorKalisz, Susan
dc.contributor.authorCurtis, Peter S.
dc.contributor.authorTeeri, James A.
dc.contributor.authorTonsor, Stephen J.
dc.date.accessioned2018-02-05T16:47:59Z
dc.date.available2018-02-05T16:47:59Z
dc.date.issued2001-06
dc.identifier.citationJenkins Klus, Dawn; Kalisz, Susan; Curtis, Peter S.; Teeri, James A.; Tonsor, Stephen J. (2001). "Family‐ and population‐level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae)." American Journal of Botany 88(6): 1080-1087.
dc.identifier.issn0002-9122
dc.identifier.issn1537-2197
dc.identifier.urihttps://hdl.handle.net/2027.42/142197
dc.publisherWiley Periodicals, Inc.
dc.publisherBotanical Society of America
dc.subject.otherelevated CO2
dc.subject.othergas exchange
dc.subject.othergenetic variation
dc.subject.othernitrogen assimilation
dc.subject.otherphotosynthesis
dc.subject.otherPlantago lanceolata
dc.subject.otherPlantaginaceae
dc.subject.otherbiomass allocation
dc.titleFamily‐ and population‐level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae)
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBotany
dc.subject.hlbsecondlevelBiology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationum4The University of Michigan Biological Station, Pellston, Michigan 49769 USA
dc.contributor.affiliationother2Michigan State University, W.K. Kellogg Biological Station, 3700 E. Gull Lake Drive, Hickory Corners, Michigan 49060 USA
dc.contributor.affiliationother3The Ohio State University, Department of Plant Biology, Columbus Ohio 43210 USA
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142197/1/ajb21080.pdf
dc.identifier.doi10.2307/2657091
dc.identifier.sourceAmerican Journal of Botany
dc.identifier.citedreferenceSokal R. R. and F. J. Rohlf 1981. Biometry. W. H. Freeman, New York, New York, USA.
dc.identifier.citedreferenceKlus D.J. 1995. Genotypic variation in response to elevated atmospheric carbon dioxide in two populations of Plantago lanceolata L. Ph.D. dissertation, Michigan State University, East Lansing, Michigan, USA.
dc.identifier.citedreferenceKuiper P. J. C. and M. Bos 1992. Plantago: a multidisciplinary study. Springer‐Verlag, Berlin, Germany.
dc.identifier.citedreferenceLoveless M. D. and J. L. Hamrick 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65 – 95.
dc.identifier.citedreferenceManly B.F.J. 1986. Multivariate statistical methods. Chapman and Hall, New York, New York, USA.
dc.identifier.citedreferenceMcNeilly T. 1968. Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine. Heredity 23: 99 – 108.
dc.identifier.citedreferencePoorter H. 1993. Interspecific variation in growth response of plants to an elevated ambient CO 2 concentration. Vegetatio 104/105: 77 – 97.
dc.identifier.citedreferencePoorter H., S. Pot and H. Lambers 1988. The effect of an elevated atmospheric CO 2 concentration on growth, photosynthesis and respiration of Plantago major. Physiology of Plants 73: 553 – 559.
dc.identifier.citedreferenceRoff D.A. 1997. Evolutionary quantitative genetics.. Chapman and Hall, New York, New York, USA.
dc.identifier.citedreferenceSage R.F. 1994. Acclimation of photosynthesis to increasing atmospheric CO 2: the gas exchange perspective. Photosynthesis Research 39: 351 – 368.
dc.identifier.citedreferenceSage R.F., T. D. Sharkey and J. R. Seemann 1988. The in‐vivo response of the ribulose‐1,5‐bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 in Phaseolus vulgaris L. Planta 174: 407 – 416.
dc.identifier.citedreferenceSAS. 1989. SAS/STAT user’s guide, version 6, 4th ed. vol. 2. SAS Institute, Cary, North Carolina, USA.
dc.identifier.citedreferenceScheiner S.M. 1993. MANOVA: multiple response variables and multispecies interactions. In S. M. Scheiner and J. Gurevitch [eds.], Design and analysis of ecological experiments. Chapman and Hall, New York, New York, USA.
dc.identifier.citedreferenceLynch M. and B. Walsh 1997. Genetics analysis of quantitative traits. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceStitt S. 1991. Rising CO 2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment 14: 741 – 762.
dc.identifier.citedreferenceTeramura A.H. 1983. Experimental ecological genetics in Plantago. IX. Differences in growth and vegetative reproduction in Plantago lanceolata Plantaginaceae from adjacent habitats. American Journal of Botany 70: 53 – 58.
dc.identifier.citedreferenceTeramura A.H. and B. R. Strain 1979. Localized populational differences in the photosynthetic response to temperature and irradiance in Plantago lanceolata. Canadian Journal of Botany 57: 2559 – 2563.
dc.identifier.citedreferenceTilman D. 1993. Carbon dioxidelimitation and the potential direct effects on plant communities. In P. M. Karieva, J. G. Kingsolver, and R. B. Huey [eds.], Biotic interactions and global change. Sinauer, Sunderland, Massachusetts, USA.
dc.identifier.citedreferenceTonsor S.J. 1985. Intrapopulational variation in pollen‐mediated gene flow in Plantago lanceolata L. Evolution 39: 775 – 782.
dc.identifier.citedreferenceTonsor S.J. 1989. Relatedness and intraspecific competition in Plantago lanceolata. American Naturalist 134: 897 – 906.
dc.identifier.citedreferenceTonsor S.J. 1990. Spatial patterns of differentiation for gene flow in Plantago lanceolata. Evolution 44: 1373 – 1378.
dc.identifier.citedreferenceTonsor S.J. and C. J. Goodnight 1997. Evolutionary predictability in natural populations: do mating system and nonadditive genetic variance interact to affect heritabilites in Plantago lanceolata?. Evolution 51: 1771 – 1782.
dc.identifier.citedreferenceTonsor S.J. and C. J. Goodnight and M. A. VanDermeulen 1998. Responses to evolutionarily novel environments: Arabidopsis thaliana. Ecological Society of America Special Publication: Symposium Abstracts 23.
dc.identifier.citedreferenceVan Tienderen P.H. 1990. Morphological variation in in Plantago lanceolata: limits of plasticity. Evolutionary Trends in Plants 4: 35 – 43.
dc.identifier.citedreferenceWard J. K. and B. R. Strain 1997. The effects of low and elevated CO 2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant, Cell and Environment 20: 254 – 260.
dc.identifier.citedreferenceWeber K.E. 1990. Selection on wing allometry in Drosophila melanogaster. Genetics 126: 975 – 989.
dc.identifier.citedreferenceWeber K.E. 1992. How small are the smallest selectable domains of form?. Genetics 103: 345 – 353.
dc.identifier.citedreferenceWolff K. and W. Van Delden 1987. Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. I. Population characteristics. Heredity 58: 183 – 192.
dc.identifier.citedreferenceWolff K. and W. Van Delden 1989. Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. IV. Response and correlated response to bidirectional selection for leaf angle. Heredity 62: 153 – 160.
dc.identifier.citedreferenceWu L. and J. Antonovics 1976. Experimental ecological genetics in Plantago II. Lead tolerance in Plantago lanceolata and Cynodon dactylon from a roadside. Ecology 57: 205 – 208.
dc.identifier.citedreferenceWulff R. D. and H. M. Alexander 1985. Intraspecific variation in the response to CO 2 enrichment in seeds and seedlings of Plantago lanceolata L. Oecologia 66: 458 – 460.
dc.identifier.citedreferenceAnalytical Development Corporation. 1992. LCA‐3 Operations manual. Hoddesdon, UK.
dc.identifier.citedreferenceAntonovics J. and R. B. Primack 1982. Experimental ecological genetics in Plantago VI. The demography of seedling transplants in Plantago lanceolata. Journal of Ecology 70: 55 – 75.
dc.identifier.citedreferenceBassirirad H. J. F. Reynolds R. A. Virginia and M. H. Brunelle 1997. Growth and Root NO 3 − and PO 4 3−: uptake capacity of three desert species in response to atmospheric CO 2 enrichment. Australian Journal of Plant Physiology 24: 353 – 358.
dc.identifier.citedreferenceBazzaz F.A. 1990. The response of natural ecosystems to the rising global CO 2 levels. Annual Review of Ecology and Systematics 21: 167 – 196.
dc.identifier.citedreferenceBazzaz F.A., J. S. Coleman and S. R. Morse 1990. Growth responses of seven major co‐occurring tree species of the northeastern United States to elevated CO 2. Canadian Journal of Forest Research 20: 1479 – 1484.
dc.identifier.citedreferenceCheng S. H. B. D. Moore and J. R. Seemann 1998. Effects of short‐ and long‐term elevated CO 2 on the expression of ribulose‐1,5‐bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana. Plant Physiology 116: 715 – 723.
dc.identifier.citedreferenceChu C. C. J. S. Coleman and H. A. Mooney 1992. Controls of biomass partitioning between roots and shoots: atmospheric CO 2 enrichment and the acquisition and allocation of carbon and nitrogen in wild radish. Oecologia 89: 580 – 587.
dc.identifier.citedreferenceColeman J. R. K. D. M. McConnaughay and F. A. Bazzaz 1993. Elevated CO 2 and plant nitrogen use: is reduced tissue nitrogen concentration size‐dependent?. Oecologia 93: 195 – 200.
dc.identifier.citedreferenceCure J. D. and B. Acock 1986. Crop responses to carbon dioxide doubling: a literature survey. Agriculture and Forest Meteorology 38: 127 – 145.
dc.identifier.citedreferenceCurtis P. S. D. J. Klus S. Kalisz and S. J. Tonsor 1996. Intraspecific variation in CO 2 responses in Raphanus raphanistrum and Plantago lanceolata: assessing the potential for evolutionary change with rising atmospheric CO 2. In C. Korneer and F. A. Bazzaz [eds.], Carbon dioxide, populations, and communities. Academic Press, San Diego, California, USA.
dc.identifier.citedreferenceCurtis P. S. D. J. Klus S. Kalisz and S. J. Tonsor, A. A. Snow and A. S. Miller 1994. Genotype‐specific effects of elevated CO 2 on fecundity in wild radish Raphanus raphanistrum. Oecologia 97: 101 – 105.
dc.identifier.citedreferenceCurtis P. S. D. J. Klus S. Kalisz and S. J. Tonsor and J. A. Teeri 1992. Seasonal responses of leaf gas exchange to elevated carbon dioxide in Populus grandidentata. Canadian Journal of Forest Research 22: 1320 – 1325.
dc.identifier.citedreferenceCurtis P. S. D. J. Klus S. Kalisz and S. J. Tonsor and J. A. Teeri and X. Wang 1998. A meta‐analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia 113: 299 – 313.
dc.identifier.citedreferenceCurtis P. S. D. J. Klus S. Kalisz and S. J. Tonsor and J. A. Teeri and X. Wang, D. R. Zak K. S. Pregitzer and J. A. Teeri 1994. Above‐ and below ground response of Populus grandidentata to elevated atmospheric CO 2 and soil N availability. Plant and Soil 165: 45 – 51.
dc.identifier.citedreferenceFajer E.D. 1989. The effects of enriched CO 2 atmospheres on plant–insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia Lepidoptera: Nymphalidae. Oecologia 81: 514 – 520.
dc.identifier.citedreferenceFajer E.D., M. D. Bowers and F. A. Bazzaz 1989a. The effects of enriched carbon dioxide atmospheres on plant–insect interactions. Science 243: 1198 – 1200.
dc.identifier.citedreferenceFajer E.D., M. D. Bowers and F. A. Bazzaz, M. D. Bowers and F. A. Bazzaz 1989b. Performance and allocation patterns of the perennial herb, Plantago lanceolata, in response to simulated herbivory and elevated CO 2 environments. Oecologia 81: 37 – 42.
dc.identifier.citedreferenceFajer E.D., M. D. Bowers and F. A. Bazzaz, M. D. Bowers and F. A. Bazzaz, M. D. Bowers and F. A. Bazzaz 1992. The effect of nutrients and enriched CO 2 environments on production of carbon‐based allelochemicals in Plantago: a test of the carbon/nutrient balance hypothesis. American Naturalist 140: 707 – 723.
dc.identifier.citedreferenceFalconer D.S. 1981. Introduction to quantitative genetics. 2nd ed. Longman, London, UK.
dc.identifier.citedreferenceGarbutt K. W. E. Williams and F. A. Bazzaz 1990. Analysis of the differential response of five annuals to elevated CO 2 during growth. Ecology 71: 1185 – 1194.
dc.identifier.citedreferenceGill J.L. 1978. Design and analysis of experiments in the animal and medical sciences, vol. 1. Iowa State University Press, Ames, Iowa, USA.
dc.identifier.citedreferenceHallauer A. R. and J. B. Miranda 1981. Quantitative genetics in maize breeding. Iowa State University Press, Ames, Iowa, USA.
dc.identifier.citedreferenceHunt R. D. W. Hand M. A. Hannah and A. M. Neal 1995. Temporal and nutritional influences on the response to elevated CO 2 in selected British grasses. Annals of Botany 75: 207 – 216.
dc.identifier.citedreferenceHurry V. M. A. Strand M. Tobiaeson P. Gradestrom and G. Oquist 1995. Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiology 109: 697 – 706.
dc.identifier.citedreferenceJang J. P. León L. Zhou and J. Sheen 1997. Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5 – 19.
dc.identifier.citedreferenceJang J. P. León L. Zhou and J. Sheen and J. Sheen 1994. Sugar sensing in higher plants. Plant Cell 6: 1665 – 1679.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.