Show simple item record

Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere

dc.contributor.authorFowler, C. M.
dc.contributor.authorAndersson, L.
dc.contributor.authorPeterson, W. K.
dc.contributor.authorHalekas, J.
dc.contributor.authorNagy, A. F.
dc.contributor.authorErgun, R. E.
dc.contributor.authorEspley, J.
dc.contributor.authorMitchell, D. L.
dc.contributor.authorConnerney, J. E. P.
dc.contributor.authorMazelle, C.
dc.contributor.authorMahaffy, P. R.
dc.contributor.authorJakosky, B. M.
dc.date.accessioned2018-03-07T18:23:23Z
dc.date.available2019-03-01T21:00:17Zen
dc.date.issued2018-01-28
dc.identifier.citationFowler, C. M.; Andersson, L.; Peterson, W. K.; Halekas, J.; Nagy, A. F.; Ergun, R. E.; Espley, J.; Mitchell, D. L.; Connerney, J. E. P.; Mazelle, C.; Mahaffy, P. R.; Jakosky, B. M. (2018). "Correlations between enhanced electron temperatures and electric field wave power in the Martian ionosphere." Geophysical Research Letters 45(2): 493-501.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/142425
dc.description.abstractStatistical correlations are reported between measured electron temperatures and total electric field wave power (in the 2–100 Hz frequency range), at Mars’ subsolar point ionosphere. The observations, made by the Mars Atmosphere and Volatile EvolutioN spacecraft, suggest that electric field wave power from the Mars‐solar wind interaction propagates through the Martian ionosphere and is able to heat ionospheric electrons by over 1000 K. Such heating can account for a substantial (but likely not complete) fraction of previously reported discrepancies between modeled and observed electron temperatures in Mars’ upper ionosphere. Wave power is typically less than observable thresholds below altitudes of about 200 km, suggesting that energy is deposited into the ionosphere above this. Observed total wave powers range between 10−12 and 10−9 (V/m)2 and decrease with increasing integrated electron density (or decreasing altitude).Key PointsCorrelations exist between observed electron temperature and total electric field wave power in Mars’ ionosphereElectron temperature can be enhanced by over 1000 K for the largest observed wave powersThe observed heating can account for a large fraction of reported discrepancies between modeled and observed electron temperatures
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.otherionosphere
dc.subject.otherMars
dc.subject.otherheating
dc.subject.otherelectron
dc.titleCorrelations between enhanced electron temperatures and electric field wave power in the Martian ionosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142425/1/grl55786.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/142425/2/grl55786_am.pdf
dc.identifier.doi10.1002/2017GL073387
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceLillis, R. J., M. O. Fillingim, and D. A. Brain ( 2011 ), Three‐dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons, J. Geophys. Res., 116, A12317, doi: 10.1029/2011JA016982.
dc.identifier.citedreferenceFowler, C., et al. ( 2015 ), The first in situ electron temperature and density measurements of the Martian nightside ionosphere, Geophys. Res. Lett., 42, 8854 – 8861, doi: 10.1002/2015GL065267.
dc.identifier.citedreferenceFowler, C. M., L. Andersson, J. Halekas, J. R. Espley, C. Mazelle, E. R. Coughlin, R. E. Ergun, D. J. Andrews, J. E. P. Connerney, and B. Jakosky ( 2017 ), Electric and magnetic variations in the near‐Mars environment, J. Geophys. Res. Space Physics, 122, 8536 – 8559, doi: 10.1002/2016JA023411.
dc.identifier.citedreferenceFox, J. L. ( 1993a ), On the escape of oxygen and hydrogen from Mars, Geophys. Res. Lett., 20 ( 17 ), 1747 – 1750.
dc.identifier.citedreferenceFox, J. L. ( 1993b ), Upper limits to the nightside ionosphere of Mars, Geophys. Res. Lett., 20 ( 13 ), 1339 – 1342.
dc.identifier.citedreferenceFox, J. L., and A. Dalgarno ( 1979 ), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84 ( A12 ), 7315 – 7333.
dc.identifier.citedreferenceFox, J. L., and A. B. Hać ( 2009 ), Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204 ( 2 ), 527 – 544.
dc.identifier.citedreferenceFrahm, R., et al. ( 2006 ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182 ( 2 ), 371 – 382.
dc.identifier.citedreferenceHaider, S., J. Kim, A. Nagy, C. Keller, M. Verigin, K. Gringauz, N. Shutte, K. Szego, and P. Kiraly ( 1992 ), Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars, J. Geophys. Res., 97 ( A7 ), 10,637 – 10,641.
dc.identifier.citedreferenceHalekas, J., E. Taylor, G. Dalton, G. Johnson, D. Curtis, J. McFadden, D. Mitchell, R. Lin, and B. Jakosky ( 2015a ), The solar wind ion analyzer for MAVEN, Space Sci. Rev., 195, 125 – 151, doi: 10.1007/s11214-013-0029-z.
dc.identifier.citedreferenceHalekas, J., et al. ( 2015b ), MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars, Geophys. Res. Lett., 42, 8901 – 8909, doi: 10.1002/2015GL064693.
dc.identifier.citedreferenceHalekas, J., et al. ( 2016 ), Structure, dynamics, and seasonal variability of the mars‐solar wind interaction: MAVEN solar wind ion analyzer in‐flight performance and science results, J. Geophys. Res. Space Physics, 122, 547 – 578, doi: 10.1002/2016JA023167.
dc.identifier.citedreferenceHanson, W., and G. Mantas ( 1988 ), Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere, J. Geophys. Res., 93 ( A7 ), 7538 – 7544.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015 ), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci. Rev., 195, 3 – 48.
dc.identifier.citedreferenceLee, Y., M. R. Combi, V. Tenishev, S. W. Bougher, and R. J. Lillis ( 2015 ), Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere, J. Geophys. Res. Planets, 120, 1880 – 1892, doi: 10.1002/2015JE004890.
dc.identifier.citedreferenceLillis, R. J., and X. Fang ( 2015 ), Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects, J. Geophys. Res. Planets, 120, 1332 – 1345, doi: 10.1002/2015JE004841.
dc.identifier.citedreferenceLillis, R. J., M. O. Fillingim, L. M. Peticolas, D. A. Brain, R. P. Lin, and S. W. Bougher ( 2009 ), Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization, J. Geophys. Res., 114, E11009, doi: 10.1029/2009JE003379.
dc.identifier.citedreferenceLillis, R. J., et al. ( 2015 ), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., 195 ( 1–4 ), 357 – 422.
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2015 ), The neutral gas and ion mass spectrometer on the Mars Atmosphere and Volatile Evolution mission, Space Sci. Rev., 195 ( 1–4 ), 49 – 73.
dc.identifier.citedreferenceMatta, M., M. Galand, L. Moore, M. Mendillo, and P. Withers ( 2014 ), Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations, Icarus, 227, 78 – 88.
dc.identifier.citedreferenceMitchell, D. L., et al. ( 2016 ), The MAVEN solar wind electron analyzer, Space Sci. Rev., 200 ( 1 ), 495 – 528, doi: 10.1007/s11214-015-0232-1.
dc.identifier.citedreferenceMoses, S., F. Coroniti, and F. Scarf ( 1988 ), Expectations for the microphysics of the Mars‐solar wind interaction, Geophys. Res. Lett., 15 ( 5 ), 429 – 432.
dc.identifier.citedreferenceSakai, S., et al. ( 2016 ), Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data, J. Geophys. Res. Space Physics, 121, 7049 – 7066, doi: 10.1002/2016JA022782.
dc.identifier.citedreferenceScarf, F., W. Taylor, C. Russell, and R. Elphic ( 1980 ), Pioneer Venus plasma wave observations: The solar wind‐Venus interaction, J. Geophys. Res., 85 ( A13 ), 7599 – 7612.
dc.identifier.citedreferenceSchlegel, K., and J. St‐Maurice ( 1981 ), Anomalous heating of the polar E region by unstable plasma waves 1. Observations, J. Geophys. Res., 86 ( A3 ), 1447 – 1452.
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceShapiro, V., K. Szegö, S. Ride, A. Nagy, and V. Shevchenko ( 1995 ), On the interaction between the shocked solar wind and the planetary ions on the dayside of Venus, J. Geophys. Res., 100 ( A11 ), 21,289 – 21,305.
dc.identifier.citedreferenceSt‐Maurice, J., K. Schlegel, and P. Banks ( 1981 ), Anomalous heating of the polar E region 2. Theory, J. Geophys. Res., 86 ( A3 ), 1453 – 1462.
dc.identifier.citedreferenceSt‐Maurice, J.‐P., and R. Laher ( 1985 ), Are observed broadband plasma wave amplitudes large enough to explain the enhanced electron temperatures of the high‐latitude, J. Geophys. Res., 90 ( A3 ), 2843 – 2850.
dc.identifier.citedreferenceTaylor, W., F. Scarf, C. Russell, and L. Brace ( 1979 ), Absorption of whistler mode waves in the ionosphere of Venus, Science, 205 ( 4401 ), 112 – 114.
dc.identifier.citedreferenceVerigin, M., K. Gringauz, N. Shutte, S. Haider, K. Szego, P. Kiraly, A. Nagy, and T. Gombosi ( 1991 ), On the possible source of the ionization in the nighttime Martian ionosphere: 1. Phobos 2. HARP electron spectrometer measurements, J. Geophys. Res., 96 ( A11 ), 19,307 – 19,313.
dc.identifier.citedreferenceAndersson, L., R. Ergun, and A. Stewart ( 2010 ), The combined atmospheric photochemistry and ion tracing code: Reproducing the Viking lander results and initial outflow results, Icarus, 206 ( 1 ), 120 – 129.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, G. T. Delory, A. Eriksson, J. Westfall, H. Reed, J. McCauly, D. Summers, and D. Meyers ( 2014 ), The Langmuir Probe and Waves (LPW) instrument for MAVEN, Space Sci. Rev., 195, 173 – 198.
dc.identifier.citedreferenceBrain, D., F. Bagenal, M. Acuna, J. Connerney, D. Crider, C. Mazelle, D. Mitchell, and N. Ness ( 2002 ), Observations of low‐frequency electromagnetic plasma waves upstream from the Martian shock, J. Geophys. Res., 107 ( A6 ), 1076, doi: 10.1029/2000JA000416.
dc.identifier.citedreferenceChaston, C., J. Bonnell, J. Wygant, C. Kletzing, G. Reeves, A. Gerrard, L. Lanzerotti, and C. Smith ( 2015 ), Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere, Geophys. Res. Lett., 42, 10,531 – 10,540, doi: 10.1002/2015GL066674.
dc.identifier.citedreferenceChen, R., T. Cravens, and A. Nagy ( 1978 ), The Martian ionosphere in light of the Viking observations, J. Geophys. Res., 83 ( A8 ), 3871 – 3876.
dc.identifier.citedreferenceChoi, Y., J. Kim, K. Min, A. Nagy, and K. Oyama ( 1998 ), Effect of the magnetic field on the energetics of Mars ionosphere, Geophys. Res. Lett., 25 ( 14 ), 2753 – 2756.
dc.identifier.citedreferenceCollinson, G., et al. ( 2015 ), Electric Mars: The first direct measurement of an upper limit for the Martian “polar wind” electric potential, Geophys. Res. Lett., 42, 9128 – 9134, doi: 10.1002/2015GL065084.
dc.identifier.citedreferenceConnerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard ( 2015 ), The MAVEN magnetic field investigation, Space Sci. Rev., 195, 257 – 291, doi: 10.1007/s11214-015-0169-4.
dc.identifier.citedreferenceCravens, T., T. Gombosi, J. Kozyra, A. Nagy, L. Brace, and W. Knudsen ( 1980 ), Model calculations of the dayside ionosphere of Venus—Energetics, J. Geophys. Res., 85, 7778 – 7786.
dc.identifier.citedreferenceCui, J., M. Galand, S. Zhang, E. Vigren, and H. Zou ( 2015 ), The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data, J. Geophys. Res. Planets, 120, 278 – 286, doi: 10.1002/2014JE004726.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015 ), Magnetotail dynamics at Mars: Initial MAVEN observations, Geophys. Res. Lett., 42, 8828 – 8837, doi: 10.1002/2015GL065248.
dc.identifier.citedreferenceErgun, R., L. Andersson, W. Peterson, D. Brain, G. Delory, D. Mitchell, R. Lin, and A. Yau ( 2006 ), Role of plasma waves in Mars’ atmospheric loss, Geophys. Res. Lett., 33, L14103, doi: 10.1029/2006GL025785.
dc.identifier.citedreferenceErgun, R., M. Morooka, L. Andersson, C. Fowler, G. Delory, D. J. Andrews, A. I. Eriksson, T. McEnulty, and B. Jakosky ( 2015 ), Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir Probe and Waves instrument, Geophys. Res. Lett., 42, 8846 – 8853, doi: 10.1002/2015GL065280.
dc.identifier.citedreferenceErgun, R., et al. ( 2016 ), Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating, J. Geophys. Res. Space Physics, 121, 4668 – 4678, doi: 10.1002/2016JA022349.
dc.identifier.citedreferenceEspley, J., P. Cloutier, D. Brain, D. Crider, and M. Acuña ( 2004 ), Observations of low‐frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail, J. Geophys. Res., 109, A07213, doi: 10.1029/2003JA010193.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.