Show simple item record

Comparison of two decellularized dermal equivalents

dc.contributor.authorKuo, Shiuhyang
dc.contributor.authorKim, Hyungjin Myra
dc.contributor.authorWang, Zhifa
dc.contributor.authorBingham, Eve L.
dc.contributor.authorMiyazawa, Atsuko
dc.contributor.authorMarcelo, Cynthia L.
dc.contributor.authorFeinberg, Stephen E.
dc.date.accessioned2018-05-15T20:14:17Z
dc.date.available2019-06-03T15:24:19Zen
dc.date.issued2018-04
dc.identifier.citationKuo, Shiuhyang; Kim, Hyungjin Myra; Wang, Zhifa; Bingham, Eve L.; Miyazawa, Atsuko; Marcelo, Cynthia L.; Feinberg, Stephen E. (2018). "Comparison of two decellularized dermal equivalents." Journal of Tissue Engineering and Regenerative Medicine 12(4): 983-990.
dc.identifier.issn1932-6254
dc.identifier.issn1932-7005
dc.identifier.urihttps://hdl.handle.net/2027.42/143690
dc.description.abstractImmunologically inert allogeneic acellular dermal scaffolds provide a matrix with molecular architecture close to native tissues, which synthetic scaffolds cannot. Not all nature‐derived scaffolds possess the same biological and physical properties. The different properties of scaffolds supporting cellular growth used for manufacturing tissue engineered grafts could lead to different implantation results. The scaffold properties should be carefully considered in order to meet the expected outcomes of tissue engineered grafts. In this report, we evaluated the cellular growth on AlloDerm® and Allopatch, 2 acellular scaffolds derived from human cadaver skin, using a fabricated 3D organotypic culture with primary human oral keratinocytes to produce an ex vivo produced oral mucosa equivalent (EVPOME). A well stratified epithelium could be constructed on both scaffolds. AlloDerm® and Allopatch EVPOMEs were also implanted into severe combined immunodeficiency mice to compare the ingrowth of blood vessels into the dermal component of the two EVPOMEs. Blood vessel counts were 3.3 times higher (p = .01) within Allopatch EVPOMEs than within AlloDerm® EVPOMEs. An oral and skin keratinocyte co‐culture, separated by a physical barrier to create a cell‐free zone, was used to evaluate cell migration on AlloDerm® and Allopatch. Slower cell migration was observed on Allopatch than on AlloDerm®.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheracellular dermal equivalents
dc.subject.otherkeratinocytes
dc.subject.othermucocutaneous junction
dc.subject.otheroral mucosa
dc.subject.otherscaffold
dc.subject.otherskin
dc.subject.othertissue engineering
dc.subject.other3D culture
dc.titleComparison of two decellularized dermal equivalents
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143690/1/term2530.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143690/2/term2530_am.pdf
dc.identifier.doi10.1002/term.2530
dc.identifier.sourceJournal of Tissue Engineering and Regenerative Medicine
dc.identifier.citedreferenceLee, J. B., Jeong, S. I., Bae, M. S., Yang, D. H., Heo, D. N., Kim, C. H., … Kwon, I. K. ( 2011 ). Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Engineering. Part A, 17 ( 21‐22 ), 2695 – 2702.
dc.identifier.citedreferenceAtthoff, B., Aulin, C., Adelöw, C., & Hilborn, J. ( 2007 ). Polarized protein membrane for high cell seeding efficiency. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 83 ( 2 ), 472 – 480.
dc.identifier.citedreferenceBarber, F. A., & Aziz‐Jacobo, J. ( 2009 ). Biomechanical testing of commercially available soft‐tissue augmentation materials. Arthroscopy, 25 ( 11 ), 1233 – 1239.
dc.identifier.citedreferenceBayar, G. R., Kuo, S., Marcelo, C. L., & Feinberg, S. E. ( 2016 ). In vitro development of a mucocutaneous junction for lip reconstruction. Journal of Oral and Maxillofacial Surgery, 74 ( 11 ), 2317 – 2326.
dc.identifier.citedreferenceFaraj, K. A., van Kuppevelt, T. H., & Daamen, W. F. ( 2007 ). Construction of collagen scaffolds that mimic the three‐dimensional architecture of specific tissues. Tissue Engineering, 13 ( 10 ), 2387 – 2394.
dc.identifier.citedreferenceGarg, T., Singh, O., Arora, S., & Murthy, R. S. R. ( 2012 ). Scaffold: A novel carrier for cell and drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems, 29 ( 1 ), 1 – 63.
dc.identifier.citedreferenceIida, T., Takami, Y., Yamaguchi, R., Shimazaki, S., & Harii, K. ( 2005 ). Development of a tissue‐engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: A preliminary report of clinical application to burn wounds. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 39 ( 3 ), 138 – 146.
dc.identifier.citedreferenceIzumi, K., Feinberg, S. E., Terashi, H., & Marcelo, C. L. ( 2003 ). Evaluation of transplanted tissue‐engineered oral mucosa equivalents in severe combined immunodeficient mice. Tissue Engineering, 9 ( 1 ), 163 – 174.
dc.identifier.citedreferenceIzumi, K., Neiva, R. F., & Feinberg, S. E. ( 2013 ). Intraoral grafting of tissue‐engineered human oral mucosa. The International Journal of Oral & Maxillofacial Implants, 28 ( 5 ), e295 – e303.
dc.identifier.citedreferenceIzumi, K., Song, J., & Feinberg, S. E. ( 2004 ). Development of a tissue‐engineered human oral mucosa: From the bench to the bed side. Cells, Tissues, Organs, 176 ( 1‐3 ), 134 – 152.
dc.identifier.citedreferenceIzumi, K., Takacs, G., Terashi, H., & Feinberg, S. E. ( 1999 ). Ex vivo development of a composite human oral mucosal equivalent. Journal of Oral and Maxillofacial Surgery, 57 ( 5 ), 571 – 577.
dc.identifier.citedreferenceKato, H., Marcelo, C. L., Washington, J. B., Bingham, E. L., & Feinberg, S. E. ( 2015 ). Fabrication of large size ex vivo‐produced oral mucosal equivalents for clinical application. Tissue Engineering. Part C, Methods, 21 ( 9 ), 872 – 880.
dc.identifier.citedreferenceKatou, F., Shirai, N., Kamakura, S., Tagami, H., Nagura, H., & Motegi, K. ( 2003 ). Differential expression of cornified cell envelope precursors in normal skin, intraorally transplanted skin and normal oral mucosa. The British Journal of Dermatology, 148 ( 5 ), 898 – 905.
dc.identifier.citedreferenceKhmaladze, A., Kuo, S., Kim, R. Y., Matthews, R. V., Marcelo, C. L., Feinberg, S. E., & Morris, M. D. ( 2015 ). Human oral mucosa tissue‐engineered constructs monitored by Raman fiber‐optic probe. Tissue Engineering. Part C, Methods, 21 ( 1 ), 46 – 51.
dc.identifier.citedreferenceKim, J. P., Chen, J. D., Wilke, M. S., Schall, T. J., & Woodley, D. T. ( 1994 ). Human keratinocyte migration on type IV collagen. Roles of heparin‐binding site and alpha 2 beta 1 integrin. Laboratory Investigation, 71 ( 3 ), 401 – 408.
dc.identifier.citedreferenceKo, I. K., Lee, S. J., Atala, A., & Yoo, J. J. ( 2013 ). In situ tissue regeneration through host stem cell recruitment. Experimental & Molecular Medicine, 45. e57
dc.identifier.citedreferenceKuo, S., Zhou, Y., Kim, H. M., Kato, H., Kim, R. Y., Bayar, G. R., … Feinberg, S. E. ( 2015 ). Biochemical indicators of implantation success of tissue‐engineered oral mucosa. Journal of Dental Research, 94 ( 1 ), 78 – 84.
dc.identifier.citedreferenceLuo, X., Kulig, K. M., Finkelstein, E. B., Nicholson, M. F., Liu, X. H., Goldman, S. M., … Neville, C. M. ( 2015 ). In vitro evaluation of decellularized ECM‐derived surgical scaffold biomaterials. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. https://doi.org/10.1002/jbm.b.33572
dc.identifier.citedreferenceMadaghiele, M., Sannino, A., Yannas, I. V., & Spector, M. ( 2008 ). Collagen‐based matrices with axially oriented pores. Journal of Biomedical Materials Research. Part A, 85 ( 3 ), 757 – 767.
dc.identifier.citedreferenceMoharamzadeh, K., Brook, I. M., Van Noort, R., Scutt, A. M., & Thornhill, M. H. ( 2007 ). Tissue‐engineered oral mucosa: A review of the scientific literature. Journal of Dental Research, 86 ( 2 ), 115 – 124.
dc.identifier.citedreferenceParmaksiz, M., Dogan, A., Odabas, S., Elçin, A. E., & Elçin, Y. M. ( 2016 ). Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Biomedical Materials, 11 ( 2 ). 022003
dc.identifier.citedreferencePeramo, A., Marcelo, C. L., & Feinberg, S. E. ( 2012 ). Tissue engineering of lips and muco‐cutaneous junctions: In vitro development of tissue engineered constructs of oral mucosa and skin for lip reconstruction. Tissue Engineering. Part C, Methods, 18 ( 4 ), 273 – 282.
dc.identifier.citedreferencePerez, R. A., & Mestres, G. ( 2016 ). Role of pore size and morphology in musculo‐skeletal tissue regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 61, 922 – 939.
dc.identifier.citedreferenceRodina, A. V., Tenchurin, T. K., Saprykin, V. P., Shepelev, A. D., Mamagulashvili, V. G., Grigor’ev, T. E., … Severin, S. E. ( 2017 ). Proliferative and differentiation potential of multipotent mesenchymal stem cells cultured on biocompatible polymer scaffolds with various physicochemical characteristics. Bulletin of Experimental Biology and Medicine, 162 ( 4 ), 488 – 495.
dc.identifier.citedreferenceUrbanchek, M. G., Kuo, S., Wang, Z., Moon, J. D., Bingham, E. L., Mays, E. A., … Feinberg, S. E. ( 2016 ). Dynamic functioning of latissimus Dorsi muscle Neo Sphincters compared to native anal sphincters in the rat. DDW. San Diego, CA. May 21‐24. Gastroenterology, 150 ( 4 ), S1194.
dc.identifier.citedreferenceWill, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., … Greil, P. ( 2008 ). Porous ceramic bone scaffolds for vascularized bone tissue regeneration. Journal of Materials Science. Materials in Medicine, 19 ( 8 ), 2781 – 2790.
dc.identifier.citedreferenceYoshizawa, M., Koyama, T., Kojima, T., Kato, H., Ono, Y., & Saito, C. ( 2012 ). Keratinocytes of tissue‐engineered human oral mucosa promote re‐epithelialization after intraoral grafting in athymic mice. Journal of Oral and Maxillofacial Surgery, 70 ( 5 ), 1199 – 1214.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.