Show simple item record

Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes

dc.contributor.authorRussell, Mark W.
dc.contributor.authorChung, Wendy K.
dc.contributor.authorKaltman, Jonathan R.
dc.contributor.authorMiller, Thomas A.
dc.date.accessioned2018-05-15T20:16:02Z
dc.date.available2019-05-13T14:45:28Zen
dc.date.issued2018-03-20
dc.identifier.citationRussell, Mark W.; Chung, Wendy K.; Kaltman, Jonathan R.; Miller, Thomas A. (2018). "Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes." Journal of the American Heart Association (6): n/a-n/a.
dc.identifier.issn2047-9980
dc.identifier.issn2047-9980
dc.identifier.urihttps://hdl.handle.net/2027.42/143784
dc.publisherHarcourt Assessment Inc.
dc.publisherWiley Periodicals, Inc.
dc.subject.othergenetics
dc.subject.othercongenital heart defects
dc.subject.otherclinical outcomes
dc.titleAdvances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelCardiovascular Medicine
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143784/1/jah33022.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/143784/2/jah33022_am.pdf
dc.identifier.doi10.1161/JAHA.117.006906
dc.identifier.sourceJournal of the American Heart Association
dc.identifier.citedreferenceRomano AA, Allanson JE, Dahlgren J, Gelb BD, Hall B, Pierpont ME, Roberts AE, Robinson W, Takemoto CM, Noonan JA. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2010; 126: 746 – 759.
dc.identifier.citedreferenceDigilio MC, Marino B, Toscano A, Giannotti A, Dallapiccola B. Congenital heart defects in Kabuki syndrome. Am J Med Genet. 2001; 100: 269 – 274.
dc.identifier.citedreferenceZaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano‐Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe’er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP. De novo mutations in histone‐modifying genes in congenital heart disease. Nature. 2013; 498: 220 – 223.
dc.identifier.citedreferenceWojtalik M, Mrowczynski W, Henschke J, Wronecki K, Siwinska A, Piaszczynski M, Pawelec‐Wojtalik M, Mrozinski B, Bruska M, Blaszczynski M, Surmacz R. Congenital heart defect with associated malformations in children. J Pediatr Surg. 2005; 40: 1675 – 1680.
dc.identifier.citedreferenceEskedal L, Hagemo P, Eskild A, Aamodt G, Seiler KS, Thaulow E. A population‐based study of extra‐cardiac anomalies in children with congenital cardiac malformations. Cardiol Young. 2004; 14: 600 – 607.
dc.identifier.citedreferencePostma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ, Bauer U, Pickardt T, Sperling SR, Berger F, Moorman AF, Mulder BJ, Thierfelder L, Keavney B, Goodship J, Klaassen S. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011; 4: 43 – 50.
dc.identifier.citedreferenceTheis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, O’Leary PW, Olson TM. Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circ Cardiovasc Genet. 2015; 8: 564 – 571.
dc.identifier.citedreferenceTomita‐Mitchell A, Stamm KD, Mahnke DK, Kim MS, Hidestrand PM, Liang HL, Goetsch MA, Hidestrand M, Simpson P, Pelech AN, Tweddell JS, Benson DW, Lough JW, Mitchell ME. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics. 2016; 48: 912 – 921.
dc.identifier.citedreferencePuglielli L, Ellis BC, Saunders AJ, Kovacs DM. Ceramide stabilizes beta‐site amyloid precursor protein‐cleaving enzyme 1 and promotes amyloid beta‐peptide biogenesis. J Biol Chem. 2003; 278: 19777 – 19783.
dc.identifier.citedreferenceHardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002; 297: 353 – 356.
dc.identifier.citedreferenceAarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, Ballard C. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017; 13: 217 – 231.
dc.identifier.citedreferenceMaiti TK, Konar S, Bir S, Kalakoti P, Bollam P, Nanda A. Role of apolipoprotein E polymorphism as a prognostic marker in traumatic brain injury and neurodegenerative disease: a critical review. Neurosurg Focus. 2015; 39: E3.
dc.identifier.citedreferenceCorder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak‐Vance MA. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993; 261: 921 – 923.
dc.identifier.citedreferenceYue JK, Robinson CK, Burke JF, Winkler EA, Deng H, Cnossen MC, Lingsma HF, Ferguson AR, McAllister TW, Rosand J, Burchard EG, Sorani MD, Sharma S, Nielson JL, Satris GG, Talbott JF, Tarapore PE, Korley FK, Wang KKW, Yuh EL, Mukherjee P, Diaz‐Arrastia R, Valadka AB, Okonkwo DO, Manley GT; TRACK‐TBI Investigators. Apolipoprotein E epsilon 4 (APOE‐epsilon4) genotype is associated with decreased 6‐month verbal memory performance after mild traumatic brain injury. Brain Behav. 2017; 7: e00791.
dc.identifier.citedreferenceGaynor JW, Wernovsky G, Jarvik GP, Bernbaum J, Gerdes M, Zackai E, Nord AS, Clancy RR, Nicolson SC, Spray TL. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg. 2007; 133: 1344 – 1353, 1353.e1‐3.
dc.identifier.citedreferenceGaynor JW, Nord AS, Wernovsky G, Bernbaum J, Solot CB, Burnham N, Zackai E, Heagerty PJ, Clancy RR, Nicolson SC, Jarvik GP, Gerdes M. Apolipoprotein E genotype modifies the risk of behavior problems after infant cardiac surgery. Pediatrics. 2009; 124: 241 – 250.
dc.identifier.citedreferenceGaynor JW, Kim DS, Arrington CB, Atz AM, Bellinger DC, Burt AA, Ghanayem NS, Jacobs JP, Lee TM, Lewis AB, Mahle WT, Marino BS, Miller SG, Newburger JW, Pizarro C, Ravishankar C, Santani AB, Wilder NS, Jarvik GP, Mital S, Russell MW. Validation of association of the apolipoprotein E epsilon2 allele with neurodevelopmental dysfunction after cardiac surgery in neonates and infants. J Thorac Cardiovasc Surg. 2014; 148: 2560 – 2566.
dc.identifier.citedreferenceMital S, Chung WK, Colan SD, Sleeper LA, Manlhiot C, Arrington CB, Cnota JF, Graham EM, Mitchell ME, Goldmuntz E, Li JS, Levine JC, Lee TM, Margossian R, Hsu DT. Renin‐angiotensin‐aldosterone genotype influences ventricular remodeling in infants with single ventricle. Circulation. 2011; 123: 2353 – 2362.
dc.identifier.citedreferenceBurchill LJ, Redington AN, Silversides CK, Ross HJ, Jimenez‐Juan L, Mital S, Oechslin EN, Dragulescu A, Slorach C, Mertens L, Wald RM. Renin‐angiotensin‐aldosterone system genotype and serum BNP in a contemporary cohort of adults late after Fontan palliation. Int J Cardiol. 2015; 197: 209 – 215.
dc.identifier.citedreferenceMavroudis CD, Seung Kim D, Burnham N, Morss AH, Kim JH, Burt AA, Crosslin DR, McDonald‐McGinn DM, Zackai EH, Cohen MS, Nicolson SC, Spray TL, Stanaway IB, Nickerson DA, Russell MW, Hakonarson H, Jarvik GP, Gaynor JW. A vascular endothelial growth factor A genetic variant is associated with improved ventricular function and transplant‐free survival after surgery for non‐syndromic CHD. Cardiol Young. 2018; 28: 39 – 45.
dc.identifier.citedreferenceKim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, McDonald‐McGinn DM, Zackai EH, Nicolson SC, Spray TL, Stanaway IB, Nickerson DA, Russell MW, Hakonarson H, Gaynor JW, Jarvik GP. Patient genotypes impact survival after surgery for isolated congenital heart disease. Ann Thorac Surg. 2014; 98: 104 – 110; discussion 110–111.
dc.identifier.citedreferenceRamroop R, Manase G, Lu D, Manase D, Chen S, Kim R, Lee T, Mahle WT, McHugh K, Mitchell M, Tristani‐Firouzi M, Wechsler SB, Wilder NS, Zak V, Lafreniere‐Roula M, Newburger JW, Gaynor JW, Russell MW, Mital S. Adrenergic receptor genotypes influence postoperative outcomes in infants in the Single‐Ventricle Reconstruction Trial. J Thorac Cardiovasc Surg. 2017; 154: 1703 – 1710.e3.
dc.identifier.citedreferencevan der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos‐Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta‐analysis. J Am Coll Cardiol. 2011; 58: 2241 – 2247.
dc.identifier.citedreferenceTutar E, Ekici F, Atalay S, Nacar N. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am Heart J. 2005; 150: 513 – 515.
dc.identifier.citedreferenceJacobs JP, O’Brien SM, Pasquali SK, Jacobs ML, Lacour‐Gayet FG, Tchervenkov CI, Austin EH III, Pizarro C, Pourmoghadam KK, Scholl FG, Welke KF, Mavroudis C. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011; 92: 2184 – 2191.
dc.identifier.citedreferenceJacobs ML, O’Brien SM, Jacobs JP, Mavroudis C, Lacour‐Gayet F, Pasquali SK, Welke K, Pizarro C, Tsai F, Clarke DR. An empirically based tool for analyzing morbidity associated with operations for congenital heart disease. J Thorac Cardiovasc Surg. 2013; 145: 1046 – 1057.
dc.identifier.citedreferenceVogt KN, Manlhiot C, Van Arsdell G, Russell JL, Mital S, McCrindle BW. Somatic growth in children with single ventricle physiology impact of physiologic state. J Am Coll Cardiol. 2007; 50: 1876 – 1883.
dc.identifier.citedreferenceAnderson JB, Iyer SB, Schidlow DN, Williams R, Varadarajan K, Horsley M, Slicker J, Pratt J, King E, Lannon C; National Pediatric Cardiology Quality Improvement Collaborative. Variation in growth of infants with a single ventricle. J Pediatr. 2012; 161: 16 – 21.
dc.identifier.citedreferenceSrinivasan C, Jaquiss RD, Morrow WR, Frazier EA, Martin D, Imamura M, Sachdeva R. Impact of staged palliation on somatic growth in patients with hypoplastic left heart syndrome. Congenit Heart Dis. 2010; 5: 546 – 551.
dc.identifier.citedreferenceAnderson JB, Beekman RH III, Border WL, Kalkwarf HJ, Khoury PR, Uzark K, Eghtesady P, Marino BS. Lower weight‐for‐age z score adversely affects hospital length of stay after the bidirectional Glenn procedure in 100 infants with a single ventricle. J Thorac Cardiovasc Surg. 2009; 138: 397 – 404.e1.
dc.identifier.citedreferenceTumanyan MR, Filaretova OV, Chechneva VV, Gulasaryan RS, Butrim IV, Bockeria LA. Repair of complete atrioventricular septal defect in infants with Down syndrome: outcomes and long‐term results. Pediatr Cardiol. 2015; 36: 71 – 75.
dc.identifier.citedreferenceRavishankar C, Zak V, Williams IA, Bellinger DC, Gaynor JW, Ghanayem NS, Krawczeski CD, Licht DJ, Mahony L, Newburger JW, Pemberton VL, Williams RV, Sananes R, Cook AL, Atz T, Khaikin S, Hsu DT; Pediatric Heart Network Investigators. Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr. 2013; 162: 250 – 256.e2.
dc.identifier.citedreferenceMiller TA, Zak V, Shrader P, Ravishankar C, Pemberton VL, Newburger JW, Shillingford AJ, Dagincourt N, Cnota JF, Lambert LM, Sananes R, Richmond ME, Hsu DT, Miller SG, Zyblewski SC, Williams RV; Pediatric Heart Network Investigators. Growth asymmetry, head circumference, and neurodevelopmental outcomes in infants with single ventricles. J Pediatr. 2016; 168: 220 – 225.e1.
dc.identifier.citedreferenceJones HN, Olbrych SK, Smith KL, Cnota JF, Habli M, Ramos‐Gonzales O, Owens KJ, Hinton AC, Polzin WJ, Muglia LJ, Hinton RB. Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta. 2015; 36: 1078 – 1086.
dc.identifier.citedreferenceDonofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, Cetta F, Falkensammer CB, Huhta JC, Kleinman CS. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003; 24: 436 – 443.
dc.identifier.citedreferenceSun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse‐Wortmann L, Jaeggi E, McCrindle BW, Kingdom J, Hickey E, Miller S, Seed M. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015; 131: 1313 – 1323.
dc.identifier.citedreferenceLimperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, Guizard N, McGrath E, Geva J, Annese D, Dunbar‐Masterson C, Trainor B, Laussen PC, du Plessis AJ. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010; 121: 26 – 33.
dc.identifier.citedreferenceMatthiesen NB, Henriksen TB, Agergaard P, Gaynor JW, Bach CC, Hjortdal VE, Østergaard JR. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation. 2016; 134: 1546 – 1556.
dc.identifier.citedreferenceSlicker J, Hehir DA, Horsley M, Monczka J, Stern KW, Roman B, Ocampo EC, Flanagan L, Keenan E, Lambert LM, Davis D, Lamonica M, Rollison N, Heydarian H, Anderson JB; Feeding Work Group of the National Pediatric Cardiology Quality Improvement Collaborative. Nutrition algorithms for infants with hypoplastic left heart syndrome; birth through the first interstage period. Congenit Heart Dis. 2013; 8: 89 – 102.
dc.identifier.citedreferenceBurch PT, Gerstenberger E, Ravishankar C, Hehir DA, Davies RR, Colan SD, Sleeper LA, Newburger JW, Clabby ML, Williams IA, Li JS, Uzark K, Cooper DS, Lambert LM, Pemberton VL, Pike NA, Anderson JB, Dunbar‐Masterson C, Khaikin S, Zyblewski SC, Minich LL; Pediatric Heart Network Investigators. Longitudinal assessment of growth in hypoplastic left heart syndrome: results from the Single Ventricle Reconstruction Trial. J Am Heart Assoc. 2014; 3: e000079. doi: 10.1161/JAHA.114.000079.
dc.identifier.citedreferenceWilliams RV, Zak V, Ravishankar C, Altmann K, Anderson J, Atz AM, Dunbar‐Masterson C, Ghanayem N, Lambert L, Lurito K, Medoff‐Cooper B, Margossian R, Pemberton VL, Russell J, Stylianou M, Hsu D; Pediatric Heart Network Investigators. Factors affecting growth in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial. J Pediatr. 2011; 159: 1017 – 1022.e2.
dc.identifier.citedreferenceBurch PT, Ravishankar C, Newburger JW, Lambert LM, Pemberton VL, Granger S, Floh AA, Anderson JB, Hill GD, Hill KD, Oster ME, Lewis AB, Schumacher KR, Zyblewski SC, Davies RR, Jacobs JP, Lai WW, Minich LL; Pediatric Heart Network Investigators. Assessment of growth 6 years after the Norwood procedure. J Pediatr. 2017; 180: 270 – 274.e6.
dc.identifier.citedreferenceCarey AS, Liang L, Edwards J, Brandt T, Mei H, Sharp AJ, Hsu DT, Newburger JW, Ohye RG, Chung WK, Russell MW, Rosenfeld JA, Shaffer LG, Parides MK, Edelmann L, Gelb BD. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet. 2013; 6: 444 – 451.
dc.identifier.citedreferenceInternational Cardiac Collaborative on Neurodevelopment, I. Impact of operative and postoperative factors on neurodevelopmental outcomes after cardiac operations. Ann Thorac Surg. 2016; 102: 843 – 849.
dc.identifier.citedreferenceBayley N. Bayley Scales of Infant and Toddler Development. 3rd ed. San Antonio, TX: Harcourt Assessment Inc.; 2006.
dc.identifier.citedreferenceNoeder MM, Logan BA, Struemph KL, Condon N, Mueller I, Sands B, Davies RR, Sood E. Developmental screening in children with CHD: Ages and Stages Questionnaires. Cardiol Young. 2017; 27: 1447 – 1454.
dc.identifier.citedreferenceTsao PC, Lee YS, Jeng MJ, Hsu JW, Huang KL, Tsai SJ, Chen MH, Soong WJ, Kou YR. Additive effect of congenital heart disease and early developmental disorders on attention‐deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population‐based longitudinal study. Eur Child Adolesc Psychiatry. 2017; 26: 1351 – 1359.
dc.identifier.citedreferenceHolland JE, Cassidy AR, Stopp C, White MT, Bellinger DC, Rivkin MJ, Newburger JW, DeMaso DR. Psychiatric disorders and function in adolescents with tetralogy of Fallot. J Pediatr. 2017; 187: 165 – 173.
dc.identifier.citedreferenceDeMaso DR, Calderon J, Taylor GA, Holland JE, Stopp C, White MT, Bellinger DC, Rivkin MJ, Wypij D, Newburger JW. Psychiatric disorders in adolescents with single ventricle congenital heart disease. Pediatrics. 2017; 139: e20162241.
dc.identifier.citedreferenceFormigari R, Di Donato RM, Gargiulo G, Di Carlo D, Feltri C, Picchio FM, Marino B. Better surgical prognosis for patients with complete atrioventricular septal defect and Down’s syndrome. Ann Thorac Surg. 2004; 78: 666 – 672; discussion 672.
dc.identifier.citedreferenceNewburger JW, Sleeper LA, Bellinger DC, Goldberg CS, Tabbutt S, Lu M, Mussatto KA, Williams IA, Gustafson KE, Mital S, Pike N, Sood E, Mahle WT, Cooper DS, Dunbar‐Masterson C, Krawczeski CD, Lewis A, Menon SC, Pemberton VL, Ravishankar C, Atz TW, Ohye RG, Gaynor JW; Pediatric Heart Network Investigators. Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the Single Ventricle Reconstruction Trial. Circulation. 2012; 125: 2081 – 2091.
dc.identifier.citedreferenceGaynor JW, Stopp C, Wypij D, Andropoulos DB, Atallah J, Atz AM, Beca J, Donofrio MT, Duncan K, Ghanayem NS, Goldberg CS, Hovels‐Gurich H, Ichida F, Jacobs JP, Justo R, Latal B, Li JS, Mahle WT, McQuillen PS, Menon SC, Pemberton VL, Pike NA, Pizarro C, Shekerdemian LS, Synnes A, Williams I, Bellinger DC, Newburger JW; International Cardiac Collaborative on Neurodevelopment Investigators. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015; 135: 816 – 825.
dc.identifier.citedreferenceHoffman TM, Wernovsky G, Atz AM, Kulik TJ, Nelson DP, Chang AC, Bailey JM, Akbary A, Kocsis JF, Kaczmarek R, Spray TL, Wessel DL. Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation. 2003; 107: 996 – 1002.
dc.identifier.citedreferenceMa M, Gauvreau K, Allan CK, Mayer JE Jr, Jenkins KJ. Causes of death after congenital heart surgery. Ann Thorac Surg. 2007; 83: 1438 – 1445.
dc.identifier.citedreferenceZaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017; 120: 923 – 940.
dc.identifier.citedreferenceHomsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA Jr, Kim R, Bilguvar K, Lopez‐Giraldez F, Tikhonova I, Mane S, Romano‐Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, Gaynor JW, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015; 350: 1262 – 1266.
dc.identifier.citedreferenceGlessner JT, Bick AG, Ito K, Homsy J, Rodriguez‐Murillo L, Fromer M, Mazaika E, Vardarajan B, Italia M, Leipzig J, DePalma SR, Golhar R, Sanders SJ, Yamrom B, Ronemus M, Iossifov I, Willsey AJ, State MW, Kaltman JR, White PS, Shen Y, Warburton D, Brueckner M, Seidman C, Goldmuntz E, Gelb BD, Lifton R, Seidman J, Hakonarson H, Chung WK. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014; 115: 884 – 896.
dc.identifier.citedreferenceKim DS, Kim JH, Burt AA, Crosslin DR, Burnham N, Kim CE, McDonald‐McGinn DM, Zackai EH, Nicolson SC, Spray TL, Stanaway IB, Nickerson DA, Heagerty PJ, Hakonarson H, Gaynor JW, Jarvik GP. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate‐adjusted transplant‐free survival. J Thorac Cardiovasc Surg. 2016; 151: 1147 – 1151.e4.
dc.identifier.citedreferenceJin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA Jr, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani‐Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017; 49: 1593 – 1601.
dc.identifier.citedreferenceFreeman SB, Taft LF, Dooley KJ, Allran K, Sherman SL, Hassold TJ, Khoury MJ, Saker DM. Population‐based study of congenital heart defects in Down syndrome. Am J Med Genet. 1998; 80: 213 – 217.
dc.identifier.citedreferenceBotto LD, May K, Fernhoff PM, Correa A, Coleman K, Rasmussen SA, Merritt RK, O’Leary LA, Wong LY, Elixson EM, Mahle WT, Campbell RM. A population‐based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics. 2003; 112: 101 – 107.
dc.identifier.citedreferenceRyan AK, Goodship JA, Wilson DI, Philip N, Levy A, Seidel H, Schuffenhauer S, Oechsler H, Belohradsky B, Prieur M, Aurias A, Raymond FL, Clayton‐Smith J, Hatchwell E, McKeown C, Beemer FA, Dallapiccola B, Novelli G, Hurst JA, Ignatius J, Green AJ, Winter RM, Brueton L, Brøndum‐Nielsen K, Scambler PJ. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet. 1997; 34: 798 – 804.
dc.identifier.citedreferenceMcDonald‐McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine. 2011; 90: 1 – 18.
dc.identifier.citedreferencePober BR. Williams‐Beuren syndrome. N Engl J Med. 2010; 362: 239 – 252.
dc.identifier.citedreferenceMorris CD, Magilke D, Reller M. Down’s syndrome affects results of surgical correction of complete atrioventricular canal. Pediatr Cardiol. 1992; 13: 80 – 84.
dc.identifier.citedreferenceReller MD, Morris CD. Is Down syndrome a risk factor for poor outcome after repair of congenital heart defects? J Pediatr. 1998; 132: 738 – 741.
dc.identifier.citedreferenceEvans JM, Dharmar M, Meierhenry E, Marcin JP, Raff GW. Association between Down syndrome and in‐hospital death among children undergoing surgery for congenital heart disease: a US population‐based study. Circ Cardiovasc Qual Outcomes. 2014; 7: 445 – 452.
dc.identifier.citedreferenceFudge JC Jr, Li S, Jaggers J, O’Brien SM, Peterson ED, Jacobs JP, Welke KF, Jacobs ML, Li JS, Pasquali SK. Congenital heart surgery outcomes in Down syndrome: analysis of a national clinical database. Pediatrics. 2010; 126: 315 – 322.
dc.identifier.citedreferenceSeifert HA, Howard DL, Silber JH, Jobes DR. Female gender increases the risk of death during hospitalization for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2007; 133: 668 – 675.
dc.identifier.citedreferenceSt Louis JD, Jodhka U, Jacobs JP, He X, Hill KD, Pasquali SK, Jacobs ML. Contemporary outcomes of complete atrioventricular septal defect repair: analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. J Thorac Cardiovasc Surg. 2014; 148: 2526 – 2531.
dc.identifier.citedreferenceLange R, Guenther T, Busch R, Hess J, Schreiber C. The presence of Down syndrome is not a risk factor in complete atrioventricular septal defect repair. J Thorac Cardiovasc Surg. 2007; 134: 304 – 310.
dc.identifier.citedreferenceGupta‐Malhotra M, Larson VE, Rosengart RM, Guo H, Moller JH. Mortality after total cavopulmonary connection in children with the Down syndrome. Am J Cardiol. 2010; 105: 865 – 868.
dc.identifier.citedreferenceColquitt JL, Morris SA, Denfield SW, Fraser CD, Wang Y, Kyle WB. Survival in children with Down syndrome undergoing single‐ventricle palliation. Ann Thorac Surg. 2016; 101: 1834 – 1841.
dc.identifier.citedreferenceIp P, Chiu CS, Cheung YF. Risk factors prolonging ventilation in young children after cardiac surgery: impact of noninfectious pulmonary complications. Pediatr Crit Care Med. 2002; 3: 269 – 274.
dc.identifier.citedreferenceLal PS, Chavan B, Devendran VR, Varghese R, Murmu UC, Kumar RS. Surgical outcome of congenital heart disease in Down’s syndrome. Asian Cardiovasc Thorac Ann. 2013; 21: 166 – 169.
dc.identifier.citedreferenceMalec E, Mroczek T, Pajak J, Januszewska K, Zdebska E. Results of surgical treatment of congenital heart defects in children with Down’s syndrome. Pediatr Cardiol. 1999; 20: 351 – 354.
dc.identifier.citedreferenceSybert VP, McCauley E. Turner’s syndrome. N Engl J Med. 2004; 351: 1227 – 1238.
dc.identifier.citedreferenceZakaria D, Tang X, Bhakta R, El Hassan NO, Prodhan P. Chromosomal abnormalities affect the surgical outcome in infants with hypoplastic left heart syndrome: a large cohort analysis. Pediatr Cardiol. 2018; 39: 11 – 18.
dc.identifier.citedreferenceMorales‐Demori R. Congenital heart disease and cardiac procedural outcomes in patients with trisomy 21 and Turner syndrome. Congenit Heart Dis. 2017; 12: 820 – 827.
dc.identifier.citedreferenceLeon LE, Benavides F, Espinoza K, Vial C, Alvarez P, Palomares M, Lay‐Son G, Miranda M, Repetto GM. Partial microduplication in the histone acetyltransferase complex member KANSL1 is associated with congenital heart defects in 22q11.2 microdeletion syndrome patients. Sci Rep. 2017; 7: 1795.
dc.identifier.citedreferenceCarotti A, Digilio MC, Piacentini G, Saffirio C, Di Donato RM, Marino B. Cardiac defects and results of cardiac surgery in 22q11.2 deletion syndrome. Dev Disabil Res Rev. 2008; 14: 35 – 42.
dc.identifier.citedreferenceMomma K, Kondo C, Matsuoka R. Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J Am Coll Cardiol. 1996; 27: 198 – 202.
dc.identifier.citedreferenceMahle WT, Crisalli J, Coleman K, Campbell RM, Tam VK, Vincent RN, Kanter KR. Deletion of chromosome 22q11.2 and outcome in patients with pulmonary atresia and ventricular septal defect. Ann Thorac Surg. 2003; 76: 567 – 571.
dc.identifier.citedreferenceMercer‐Rosa L, Pinto N, Yang W, Tanel R, Goldmuntz E. 22q11.2 Deletion syndrome is associated with perioperative outcome in tetralogy of Fallot. J Thorac Cardiovasc Surg. 2013; 146: 868 – 873.
dc.identifier.citedreferenceGoldmuntz E, Cassedy A, Mercer‐Rosa L, Fogel MA, Paridon SM, Marino BS. Exercise performance and 22q11.2 deletion status affect quality of life in tetralogy of Fallot. J Pediatr. 2017; 189: 162 – 168.
dc.identifier.citedreferenceParshuram C, Doyle J, Lau W, Shemie SD. Transfusion‐associated graft versus host disease. Pediatr Crit Care Med. 2002; 3: 57 – 62.
dc.identifier.citedreferencePankau R, Partsch CJ, Gosch A, Oppermann HC, Wessel A. Statural growth in Williams‐Beuren syndrome. Eur J Pediatr. 1992; 151: 751 – 755.
dc.identifier.citedreferenceEwart AK, Morris CA, Atkinson D, Jin W, Sternes K, Spallone P, Stock AD, Leppert M, Keating MT. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet. 1993; 5: 11 – 16.
dc.identifier.citedreferenceCommittee on Genetics. American Academy of Pediatrics: health care supervision for children with Williams syndrome. Pediatrics. 2001; 107: 1192 – 1204.
dc.identifier.citedreferenceLatham GJ, Ross FJ, Eisses MJ, Richards MJ, Geiduschek JM, Joffe DC. Perioperative morbidity in children with elastin arteriopathy. Paediatr Anaesth. 2016; 26: 926 – 935.
dc.identifier.citedreferenceCollins Ii RT, Collins MG, Schmitz ML, Hamrick JT. Peri‐procedural risk stratification and management of patients with Williams syndrome. Congenit Heart Dis. 2017; 12: 133 – 142.
dc.identifier.citedreferenceJordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet. 2015; 8: 189 – 200.
dc.identifier.citedreferenceThorsson T, Russell WW, El‐Kashlan N, Soemedi R, Levine J, Geisler SB, Ackley T, Tomita‐Mitchell A, Rosenfeld JA, Topf A, Tayeh M, Goodship J, Innis JW, Keavney B, Russell MW. Chromosomal imbalances in patients with congenital cardiac defects: a meta‐analysis reveals novel potential critical regions involved in heart development. Congenit Heart Dis. 2015; 10: 193 – 208.
dc.identifier.citedreferenceBallarati L, Cereda A, Caselli R, Selicorni A, Recalcati MP, Maitz S, Finelli P, Larizza L, Giardino D. Genotype‐phenotype correlations in a new case of 8p23.1 deletion and review of the literature. Eur J Med Genet. 2011; 54: 55 – 59.
dc.identifier.citedreferenceBasson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, Seidman JG, Seidman CE. The clinical and genetic spectrum of the Holt‐Oram syndrome (heart‐hand syndrome). N Engl J Med. 1994; 330: 885 – 891.
dc.identifier.citedreferenceSoemedi R, Wilson IJ, Bentham J, Darlay R, Topf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados‐Riveron J, Blue GM, Breckpot J, Hellens S, Zwolinkski S, Glen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K, Gewillig M, O’Sullivan J, Winlaw DS, Bu’Lock F, Brook JD, Bhattacharya S, Lathrop M, Santibanez‐Koref M, Cordell HJ, Goodship JA, Keavney BD. Contribution of global rare copy‐number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012; 91: 489 – 501.
dc.identifier.citedreferenceTartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP‐2, cause Noonan syndrome. Nat Genet. 2001; 29: 465 – 468.
dc.identifier.citedreferenceTidyman WE, Rauen KA. Expansion of the RASopathies. Curr Genet Med Rep. 2016; 4: 57 – 64.
dc.identifier.citedreferenceLimongelli G, Pacileo G, Marino B, Digilio MC, Sarkozy A, Elliott P, Versacci P, Calabro P, De Zorzi A, Di Salvo G, Syrris P, Patton M, McKenna WJ, Dallapiccola B, Calabro R. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. Am J Cardiol. 2007; 100: 736 – 741.
dc.identifier.citedreferenceSarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008; 3: 13.
dc.identifier.citedreferenceMartinez‐Quintana E, Rodriguez‐Gonzalez F. LEOPARD syndrome: clinical features and gene mutations. Mol Syndromol. 2012; 3: 145 – 157.
dc.identifier.citedreferenceGripp KW, Lin AE. Costello syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, Stephens K, Amemiya A, Ledbetter N, eds. GeneReviews(R). Seattle, WA: University of Washington; 1993–2018.
dc.identifier.citedreferenceRoberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013; 381: 333 – 342.
dc.identifier.citedreferencePrendiville TW, Gauvreau K, Tworog‐Dube E, Patkin L, Kucherlapati RS, Roberts AE, Lacro RV. Cardiovascular disease in Noonan syndrome. Arch Dis Child. 2014; 99: 629 – 634.
dc.identifier.citedreferenceBriggs BJ, Dickerman JD. Bleeding disorders in Noonan syndrome. Pediatr Blood Cancer. 2012; 58: 167 – 172.
dc.identifier.citedreferencePerez Botero J, Ho TP, Rodriguez V, Khan SP, Pruthi RK, Patnaik MM. Coagulation abnormalities and haemostatic surgical outcomes in 142 patients with Noonan syndrome. Haemophilia. 2017; 23: e237 – e240.
dc.identifier.citedreferenceMatsumoto N, Niikawa N. Kabuki make‐up syndrome: a review. Am J Med Genet C Semin Med Genet. 2003; 117C: 57 – 65.
dc.identifier.citedreferenceLin AE, Krikov S, Riehle‐Colarusso T, Frias JL, Belmont J, Anderka M, Geva T, Getz KD, Botto LD; National Birth Defects Prevention Study. Laterality defects in the national birth defects prevention study (1998–2007): birth prevalence and descriptive epidemiology. Am J Med Genet A. 2014; 164A: 2581 – 2591.
dc.identifier.citedreferenceShapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ, Kimple AJ, Manion M, Knowles MR, Leigh MW; Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016; 51: 115 – 132.
dc.identifier.citedreferenceHarden B, Tian X, Giese R, Nakhleh N, Kureshi S, Francis R, Hanumanthaiah S, Li Y, Swisher M, Kuehl K, Sami I, Olivier K, Jonas R, Lo CW, Leatherbury L. Increased postoperative respiratory complications in heterotaxy congenital heart disease patients with respiratory ciliary dysfunction. J Thorac Cardiovasc Surg. 2014; 147: 1291 – 1298.e2.
dc.identifier.citedreferenceBachmann‐Gagescu R, Dempsey JC, Phelps IG, O’Roak BJ, Knutzen DM, Rue TC, Ishak GE, Isabella CR, Gorden N, Adkins J, Boyle EA, de Lacy N, O’Day D, Alswaid A, Ramadevi AR, Lingappa L, Lourenco C, Martorell L, Garcia‐Cazorla A, Ozyurek H, Haliloglu G, Tuysuz B, Topcu M; University of Washington Center for Mendelian Genomics, Chance P, Parisi MA, Glass IA, Shendure J, Doherty D. Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet. 2015; 52: 514 – 522.
dc.identifier.citedreferenceOud MM, Lamers IJ, Arts HH. Ciliopathies: genetics in pediatric medicine. J Pediatr Genet. 2017; 6: 18 – 29.
dc.identifier.citedreferenceReiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017; 18: 533 – 547.
dc.identifier.citedreferenceBruel AL, Franco B, Duffourd Y, Thevenon J, Jego L, Lopez E, Deleuze JF, Doummar D, Giles RH, Johnson CA, Huynen MA, Chevrier V, Burglen L, Morleo M, Desguerres I, Pierquin G, Doray B, Gilbert‐Dussardier B, Reversade B, Steichen‐Gersdorf E, Baumann C, Panigrahi I, Fargeot‐Espaliat A, Dieux A, David A, Goldenberg A, Bongers E, Gaillard D, Argente J, Aral B, Gigot N, St‐Onge J, Birnbaum D, Phadke SR, Cormier‐Daire V, Eguether T, Pazour GJ, Herranz‐Perez V, Goldstein JS, Pasquier L, Loget P, Saunier S, Megarbane A, Rosnet O, Leroux MR, Wallingford JB, Blacque OE, Nachury MV, Attie‐Bitach T, Riviere JB, Faivre L, Thauvin‐Robinet C. Fifteen years of research on oral‐facial‐digital syndromes: from 1 to 16 causal genes. J Med Genet. 2017; 54: 371 – 380.
dc.identifier.citedreferenceParisi MA. Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet. 2009; 151C: 326 – 340.
dc.identifier.citedreferenceFranco B, Thauvin‐Robinet C. Update on oral‐facial‐digital syndromes (OFDS). Cilia. 2016; 5: 12.
dc.identifier.citedreferenceSchott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG. Congenital heart disease caused by mutations in the transcription factor NKX2‐5. Science. 1998; 281: 108 – 111.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.